Properties

Label 2.1.16.58j1.213
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(58\)
Galois group $C_2^6.(C_2^2\times S_4)$ (as 16T1668)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 6\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $58$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_1$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 3, \frac{25}{6}, \frac{25}{6}]$
Visible Swan slopes:$[1,2,\frac{19}{6},\frac{19}{6}]$
Means:$\langle\frac{1}{2}, \frac{5}{4}, \frac{53}{24}, \frac{43}{16}\rangle$
Rams:$(1, 3, \frac{23}{3}, \frac{23}{3})$
Jump set:$[1, 2, 4, 8, 32]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{-5})$, $\Q_{2}(\sqrt{2\cdot 5})$, $\Q_{2}(\sqrt{-2})$, 2.1.4.8b1.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 2 x^{8} + 4 x^{4} + 6 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^4 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[43, 36, 20, 8, 0]$

Invariants of the Galois closure

Galois degree: $6144$
Galois group: $C_2^6.(C_2^2\times S_4)$ (as 16T1668)
Inertia group: $C_2^8:(C_2\times C_6)$ (as 16T1516)
Wild inertia group: not computed
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}, \frac{23}{6}, \frac{23}{6}, \frac{25}{6}, \frac{25}{6}]$
Galois Swan slopes: $[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3},\frac{17}{6},\frac{17}{6},\frac{19}{6},\frac{19}{6}]$
Galois mean slope: $4.041666666666667$
Galois splitting model: $x^{16} - 8 x^{14} - 32 x^{13} + 240 x^{12} - 680 x^{11} + 1536 x^{10} - 1904 x^{9} - 802 x^{8} + 3248 x^{7} + 2816 x^{6} - 6544 x^{5} - 3692 x^{4} + 4976 x^{3} + 2592 x^{2} - 176 x + 22$ Copy content Toggle raw display