Show commands: Magma
Group invariants
| Abstract group: | $C_2^6.(C_2^2\times S_4)$ |
| |
| Order: | $6144=2^{11} \cdot 3$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $16$ |
| |
| Transitive number $t$: | $1668$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,10)(2,12)(3,9)(4,11)(5,13)(6,15)(7,14)(8,16)$, $(1,16,4,15)(2,13,3,14)(5,10,7,12)(6,11,8,9)$, $(1,4)(5,6,8,7)(9,11,12,10)(13,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ $8$: $C_2^3$ $12$: $D_{6}$ x 3 $24$: $S_4$, $S_3 \times C_2^2$ $48$: $S_4\times C_2$ x 3 $96$: 12T48 $192$: $V_4^2:(S_3\times C_2)$ x 3 $384$: 12T136 x 3 $1536$: 24T4591 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 8: None
Low degree siblings
16T1668 x 7, 24T7847 x 8, 24T7848 x 8, 24T8961 x 24, 24T8965 x 24, 32T397141 x 12, 32T397333 x 4, 32T397439 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
65 x 65 character table
Regular extensions
Data not computed