Properties

Label 2.1.16.58c1.842
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(58\)
Galois group $(C_2^2\times C_4^2):D_8$ (as 16T1276)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 4 x^{14} + 8 x^{13} + 2 x^{12} + 8 x^{11} + 24 x^{10} + 16 x^{5} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $58$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 2, \frac{15}{4}, \frac{37}{8}]$
Visible Swan slopes:$[1,1,\frac{11}{4},\frac{29}{8}]$
Means:$\langle\frac{1}{2}, \frac{3}{4}, \frac{7}{4}, \frac{43}{16}\rangle$
Rams:$(1, 1, 8, 15)$
Jump set:$[1, 3, 11, 27, 43]$
Roots of unity:$4 = 2^{ 2 }$

Intermediate fields

$\Q_{2}(\sqrt{-1})$, 2.1.4.6a1.1, 2.1.8.21a1.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 4 x^{14} + 8 x^{13} + 2 x^{12} + 8 x^{11} + 24 x^{10} + 16 x^{5} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{12} + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$2$,$1$,$1$
Indices of inseparability:$[43, 28, 12, 12, 0]$

Invariants of the Galois closure

Galois degree: $1024$
Galois group: $(C_2^2\times C_4^2):D_8$ (as 16T1276)
Inertia group: $C_2^5:D_8$ (as 16T1002)
Wild inertia group: not computed
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, \frac{9}{2}, \frac{9}{2}, \frac{37}{8}]$
Galois Swan slopes: $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},\frac{7}{2},\frac{7}{2},\frac{29}{8}]$
Galois mean slope: $4.43359375$
Galois splitting model: $x^{16} + 30 x^{12} - 300 x^{10} + 3400 x^{8} - 10000 x^{6} + 16250 x^{4} - 12500 x^{2} + 15625$ Copy content Toggle raw display