Properties

Label 2.1.16.54o1.40
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(54\)
Galois group $D_4:D_4$ (as 16T126)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $54$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2^2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 3, \frac{7}{2}, 4]$
Visible Swan slopes:$[1,2,\frac{5}{2},3]$
Means:$\langle\frac{1}{2}, \frac{5}{4}, \frac{15}{8}, \frac{39}{16}\rangle$
Rams:$(1, 3, 5, 9)$
Jump set:$[1, 2, 15, 31, 47]$
Roots of unity:$4 = 2^{ 2 }$

Intermediate fields

$\Q_{2}(\sqrt{-1})$, 2.1.4.8b1.3, 2.1.4.9a1.1, 2.1.4.9a1.4, 2.1.8.22d1.1, 2.1.8.24c1.21, 2.1.8.24c1.27

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$,$1$
Indices of inseparability:$[39, 30, 20, 8, 0]$

Invariants of the Galois closure

Galois degree: $64$
Galois group: $D_4:D_4$ (as 16T126)
Inertia group: $C_4:D_4$ (as 16T43)
Wild inertia group: $C_4:D_4$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, \frac{7}{2}, 4]$
Galois Swan slopes: $[1,1,2,\frac{5}{2},3]$
Galois mean slope: $3.4375$
Galois splitting model: $x^{16} - 8 x^{15} + 28 x^{14} - 48 x^{13} + 20 x^{12} + 136 x^{11} - 400 x^{10} + 624 x^{9} - 474 x^{8} - 184 x^{7} + 1240 x^{6} - 2112 x^{5} + 2396 x^{4} - 1936 x^{3} + 1176 x^{2} - 480 x + 130$ Copy content Toggle raw display