Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $126$ | |
| Group : | $(C_2\times D_8):C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,15,6,3,10,8,14,12)(2,16,5,4,9,7,13,11), (1,13)(2,14)(3,4)(5,10)(6,9)(7,15)(8,16)(11,12), (1,10)(2,9)(3,7)(4,8)(11,15)(12,16) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 6, $C_2^3$ 16: $D_{8}$ x 2, $D_4\times C_2$ x 3 32: $Z_8 : Z_8^\times$, $C_2^2 \wr C_2$, 16T29 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$ x 3
Degree 8: $D_{8}$, $Z_8 : Z_8^\times$, $C_2^2 \wr C_2$
Low degree siblings
16T126 x 7, 32T134 x 4, 32T135 x 2, 32T296Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 8)( 4, 7)( 5,13)( 6,14)(11,16)(12,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,11)( 4,12)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3,16)( 4,15)( 5,13)( 6,14)( 7,12)( 8,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 7)( 4, 8)( 5,14)( 6,13)( 9,10)(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5, 6)( 7,16)( 8,15)( 9,10)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3,15)( 4,16)( 5,14)( 6,13)( 7,11)( 8,12)( 9,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 3)( 2, 4)( 5,16)( 6,15)( 7,13)( 8,14)( 9,11)(10,12)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 3, 5, 7,10,12,13,16)( 2, 4, 6, 8, 9,11,14,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 9,11)( 2, 4,10,12)( 5,16,14, 8)( 6,15,13, 7)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 3,14,15,10,12, 6, 8)( 2, 4,13,16, 9,11, 5, 7)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 4, 5, 8,10,11,13,15)( 2, 3, 6, 7, 9,12,14,16)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 4,14,16,10,11, 6, 7)( 2, 3,13,15, 9,12, 5, 8)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5,10,13)( 2, 6, 9,14)( 3, 7,12,16)( 4, 8,11,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5,10,13)( 2, 6, 9,14)( 3,15,12, 8)( 4,16,11, 7)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 6,10,14)( 2, 5, 9,13)( 3, 8,12,15)( 4, 7,11,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,14)( 6,13)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,13)( 6,14)( 7,16)( 8,15)$ |
Group invariants
| Order: | $64=2^{6}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [64, 128] |
| Character table: |
2 6 4 5 4 6 4 5 4 3 4 3 4 4 4 5 4 5 6 6
1a 2a 2b 2c 2d 2e 2f 2g 2h 8a 4a 8b 8c 8d 4b 4c 4d 2i 2j
2P 1a 1a 1a 1a 1a 1a 1a 1a 1a 4b 2i 4d 4b 4d 2j 2j 2j 1a 1a
3P 1a 2a 2b 2c 2d 2e 2f 2g 2h 8c 4a 8d 8a 8b 4b 4c 4d 2i 2j
5P 1a 2a 2b 2c 2d 2e 2f 2g 2h 8c 4a 8d 8a 8b 4b 4c 4d 2i 2j
7P 1a 2a 2b 2c 2d 2e 2f 2g 2h 8a 4a 8b 8c 8d 4b 4c 4d 2i 2j
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 -1 1 1 -1 1 1 1
X.3 1 -1 -1 1 1 -1 -1 1 1 1 -1 -1 1 -1 1 -1 1 1 1
X.4 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 1 1 1 1 1 1 1
X.5 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 -1 1 1 1 1 1
X.6 1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 1 -1 1 -1 1 1 1
X.7 1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1
X.8 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1
X.9 2 . 2 . 2 . 2 . . . . . . . -2 -2 -2 2 2
X.10 2 . -2 . 2 . -2 . . . . . . . -2 2 -2 2 2
X.11 2 -2 . . -2 2 . . . . . . . . -2 . 2 -2 2
X.12 2 . . -2 -2 . . 2 . . . . . . 2 . -2 -2 2
X.13 2 . . 2 -2 . . -2 . . . . . . 2 . -2 -2 2
X.14 2 2 . . -2 -2 . . . . . . . . -2 . 2 -2 2
X.15 2 . -2 . -2 . 2 . . A . -A -A A . . . 2 -2
X.16 2 . -2 . -2 . 2 . . -A . A A -A . . . 2 -2
X.17 2 . 2 . -2 . -2 . . A . A -A -A . . . 2 -2
X.18 2 . 2 . -2 . -2 . . -A . -A A A . . . 2 -2
X.19 4 . . . 4 . . . . . . . . . . . . -4 -4
A = -E(8)+E(8)^3
= -Sqrt(2) = -r2
|