Defining polynomial
\(x^{16} + 4 x^{14} + 4 x^{12} + 8 x^{9} + 10 x^{8} + 8 x^{7} + 4 x^{4} + 10\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $54$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $-1$ |
$\Aut(K/\Q_{2})$: | $C_2\times C_4$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[2, 3, \frac{7}{2}, 4]$ |
Visible Swan slopes: | $[1,2,\frac{5}{2},3]$ |
Means: | $\langle\frac{1}{2}, \frac{5}{4}, \frac{15}{8}, \frac{39}{16}\rangle$ |
Rams: | $(1, 3, 5, 9)$ |
Jump set: | $[1, 7, 14, 32, 48]$ |
Roots of unity: | $4 = 2^{ 2 }$ |
Intermediate fields
$\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{2\cdot 5})$, $\Q_{2}(\sqrt{-2\cdot 5})$, 2.1.4.8b1.2, 2.1.4.11a1.5 x2, 2.1.4.11a1.20 x2, 2.1.8.22d1.13, 2.1.8.24c1.19, 2.1.8.24c1.15 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{16} + 4 x^{14} + 4 x^{12} + 8 x^{9} + 10 x^{8} + 8 x^{7} + 4 x^{4} + 10 \)
|
Ramification polygon
Residual polynomials: | $z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$ |
Associated inertia: | $1$,$1$,$1$,$1$ |
Indices of inseparability: | $[39, 30, 20, 8, 0]$ |
Invariants of the Galois closure
Galois degree: | $32$ |
Galois group: | $C_2^2.D_4$ (as 16T54) |
Inertia group: | $C_2^2:C_4$ (as 16T10) |
Wild inertia group: | $C_2^2:C_4$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 3, \frac{7}{2}, 4]$ |
Galois Swan slopes: | $[1,2,\frac{5}{2},3]$ |
Galois mean slope: | $3.375$ |
Galois splitting model: |
$x^{16} - 8 x^{15} + 24 x^{14} - 8 x^{13} - 108 x^{12} + 240 x^{11} + 120 x^{10} - 736 x^{9} + 1212 x^{8} - 2112 x^{7} + 5088 x^{6} - 10464 x^{5} + 6176 x^{4} - 8032 x^{3} + 15360 x^{2} - 2880 x + 6568$
|