Properties

Label 2.1.16.54o1.108
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(54\)
Galois group $C_2^2.D_4$ (as 16T54)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 8 x^{15} + 4 x^{14} + 4 x^{12} + 8 x^{9} + 10 x^{8} + 8 x^{7} + 4 x^{4} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $54$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2\times C_4$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 3, \frac{7}{2}, 4]$
Visible Swan slopes:$[1,2,\frac{5}{2},3]$
Means:$\langle\frac{1}{2}, \frac{5}{4}, \frac{15}{8}, \frac{39}{16}\rangle$
Rams:$(1, 3, 5, 9)$
Jump set:$[1, 7, 29, 45, 61]$
Roots of unity:$8 = 2^{ 3 }$

Intermediate fields

$\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{2})$, $\Q_{2}(\sqrt{-2})$, 2.1.4.8b1.1, 2.1.4.11a1.2 x2, 2.1.4.11a1.13 x2, 2.1.8.22d1.8, 2.1.8.24c1.10, 2.1.8.24c1.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 8 x^{15} + 4 x^{14} + 4 x^{12} + 8 x^{9} + 10 x^{8} + 8 x^{7} + 4 x^{4} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$,$1$
Indices of inseparability:$[39, 30, 20, 8, 0]$

Invariants of the Galois closure

Galois degree: $32$
Galois group: $C_2^2.D_4$ (as 16T54)
Inertia group: $C_2^2:C_4$ (as 16T10)
Wild inertia group: $C_2^2:C_4$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 3, \frac{7}{2}, 4]$
Galois Swan slopes: $[1,2,\frac{5}{2},3]$
Galois mean slope: $3.375$
Galois splitting model: $x^{16} - 8 x^{15} - 32 x^{14} + 336 x^{13} - 552 x^{12} - 1736 x^{11} + 32352 x^{10} - 134544 x^{9} + 414478 x^{8} - 952856 x^{7} + 1686448 x^{6} - 2379952 x^{5} + 2734296 x^{4} - 2193720 x^{3} + 995120 x^{2} - 103280 x + 30505$ Copy content Toggle raw display