Defining polynomial
|
\(x^{16} + 8 x^{15} + 4 x^{14} + 4 x^{12} + 8 x^{9} + 10 x^{8} + 8 x^{7} + 4 x^{4} + 2\)
|
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$: | $16$ |
| Ramification index $e$: | $16$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $54$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $-1$ |
| $\Aut(K/\Q_{2})$: | $C_2\times C_4$ |
| This field is not Galois over $\Q_{2}.$ | |
| Visible Artin slopes: | $[2, 3, \frac{7}{2}, 4]$ |
| Visible Swan slopes: | $[1,2,\frac{5}{2},3]$ |
| Means: | $\langle\frac{1}{2}, \frac{5}{4}, \frac{15}{8}, \frac{39}{16}\rangle$ |
| Rams: | $(1, 3, 5, 9)$ |
| Jump set: | $[1, 7, 29, 45, 61]$ |
| Roots of unity: | $8 = 2^{ 3 }$ |
Intermediate fields
| $\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{2})$, $\Q_{2}(\sqrt{-2})$, 2.1.4.8b1.1, 2.1.4.11a1.2 x2, 2.1.4.11a1.13 x2, 2.1.8.22d1.8, 2.1.8.24c1.10, 2.1.8.24c1.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | $\Q_{2}$ |
| Relative Eisenstein polynomial: |
\( x^{16} + 8 x^{15} + 4 x^{14} + 4 x^{12} + 8 x^{9} + 10 x^{8} + 8 x^{7} + 4 x^{4} + 2 \)
|
Ramification polygon
| Residual polynomials: | $z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$ |
| Associated inertia: | $1$,$1$,$1$,$1$ |
| Indices of inseparability: | $[39, 30, 20, 8, 0]$ |
Invariants of the Galois closure
| Galois degree: | $32$ |
| Galois group: | $C_2^2.D_4$ (as 16T54) |
| Inertia group: | $C_2^2:C_4$ (as 16T10) |
| Wild inertia group: | $C_2^2:C_4$ |
| Galois unramified degree: | $2$ |
| Galois tame degree: | $1$ |
| Galois Artin slopes: | $[2, 3, \frac{7}{2}, 4]$ |
| Galois Swan slopes: | $[1,2,\frac{5}{2},3]$ |
| Galois mean slope: | $3.375$ |
| Galois splitting model: |
$x^{16} - 8 x^{15} - 32 x^{14} + 336 x^{13} - 552 x^{12} - 1736 x^{11} + 32352 x^{10} - 134544 x^{9} + 414478 x^{8} - 952856 x^{7} + 1686448 x^{6} - 2379952 x^{5} + 2734296 x^{4} - 2193720 x^{3} + 995120 x^{2} - 103280 x + 30505$
|