Properties

Label 2.1.16.50o1.27
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(50\)
Galois group $C_2^4.D_4$ (as 16T297)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 4 x^{12} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x^{3} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $50$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 3, \frac{7}{2}, \frac{7}{2}]$
Visible Swan slopes:$[1,2,\frac{5}{2},\frac{5}{2}]$
Means:$\langle\frac{1}{2}, \frac{5}{4}, \frac{15}{8}, \frac{35}{16}\rangle$
Rams:$(1, 3, 5, 5)$
Jump set:$[1, 7, 15, 31, 47]$
Roots of unity:$4 = 2^{ 2 }$

Intermediate fields

$\Q_{2}(\sqrt{-1})$, 2.1.4.8b1.3, 2.1.8.22d1.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 4 x^{12} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x^{3} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^4 + 1$,$z^3 + 1$
Associated inertia:$1$,$1$,$2$
Indices of inseparability:$[35, 35, 20, 8, 0]$

Invariants of the Galois closure

Galois degree: $128$
Galois group: $C_2^4.D_4$ (as 16T297)
Inertia group: $C_4^2:C_2$ (as 16T30)
Wild inertia group: $C_4^2:C_2$
Galois unramified degree: $4$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]$
Galois Swan slopes: $[1,1,2,\frac{5}{2},\frac{5}{2}]$
Galois mean slope: $3.1875$
Galois splitting model: $x^{16} - 8 x^{14} + 56 x^{12} - 152 x^{10} + 314 x^{8} - 296 x^{6} + 280 x^{4} - 120 x^{2} + 25$ Copy content Toggle raw display