Defining polynomial
\(x^{16} + 4 x^{12} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x^{3} + 2\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $50$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$: | $C_2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[2, 3, \frac{7}{2}, \frac{7}{2}]$ |
Visible Swan slopes: | $[1,2,\frac{5}{2},\frac{5}{2}]$ |
Means: | $\langle\frac{1}{2}, \frac{5}{4}, \frac{15}{8}, \frac{35}{16}\rangle$ |
Rams: | $(1, 3, 5, 5)$ |
Jump set: | $[1, 7, 15, 31, 47]$ |
Roots of unity: | $4 = 2^{ 2 }$ |
Intermediate fields
$\Q_{2}(\sqrt{-1})$, 2.1.4.8b1.3, 2.1.8.22d1.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{16} + 4 x^{12} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x^{3} + 2 \)
|
Ramification polygon
Residual polynomials: | $z^8 + 1$,$z^4 + 1$,$z^3 + 1$ |
Associated inertia: | $1$,$1$,$2$ |
Indices of inseparability: | $[35, 35, 20, 8, 0]$ |
Invariants of the Galois closure
Galois degree: | $128$ |
Galois group: | $C_2^4.D_4$ (as 16T297) |
Inertia group: | $C_4^2:C_2$ (as 16T30) |
Wild inertia group: | $C_4^2:C_2$ |
Galois unramified degree: | $4$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]$ |
Galois Swan slopes: | $[1,1,2,\frac{5}{2},\frac{5}{2}]$ |
Galois mean slope: | $3.1875$ |
Galois splitting model: |
$x^{16} - 8 x^{14} + 56 x^{12} - 152 x^{10} + 314 x^{8} - 296 x^{6} + 280 x^{4} - 120 x^{2} + 25$
|