Show commands: Magma
Group invariants
Abstract group: | $C_2^4.D_4$ |
| |
Order: | $128=2^{7}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $4$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $297$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,16,5,12)(2,15,6,11)(3,10,7,13)(4,9,8,14)$, $(1,7,5,4)(2,8,6,3)(11,16,12,15)(13,14)$, $(1,14,3,16)(2,13,4,15)(5,10,7,11)(6,9,8,12)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_4$ x 4, $C_2^2$ x 7 $8$: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ $32$: $C_2^3 : C_4 $ x 2, $C_2 \times (C_2^2:C_4)$ $64$: 16T76 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $C_2^3 : C_4 $
Low degree siblings
16T234 x 2, 16T250 x 2, 16T297 x 3, 16T310 x 2, 32T524 x 2, 32T525, 32T526 x 2, 32T569 x 2, 32T570, 32T689 x 4, 32T690 x 4, 32T718 x 2, 32T719Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,16)(12,15)$ |
2C | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 9,10)(11,12)(13,14)(15,16)$ |
2D | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,14)(10,13)(11,15)(12,16)$ |
2E | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,16)(10,15)(11,13)(12,14)$ |
2F | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 1, 6)( 2, 5)( 3, 7)( 4, 8)(11,12)(15,16)$ |
2G | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,11)(10,12)(13,16)(14,15)$ |
2H | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)(11,12)(15,16)$ |
2I | $2^{8}$ | $8$ | $2$ | $8$ | $( 1,16)( 2,15)( 3, 9)( 4,10)( 5,12)( 6,11)( 7,14)( 8,13)$ |
4A | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,15,10,16)(11,13,12,14)$ |
4B | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 8, 2, 7)( 3, 5, 4, 6)( 9,12,10,11)(13,15,14,16)$ |
4C | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,10, 5,13)( 2, 9, 6,14)( 3,15, 7,11)( 4,16, 8,12)$ |
4D | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,13, 6, 9)( 2,14, 5,10)( 3,11, 8,16)( 4,12, 7,15)$ |
4E | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,12, 2,11)( 3,14, 4,13)( 5,16, 6,15)( 7, 9, 8,10)$ |
4F1 | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,12, 4,10)( 2,11, 3, 9)( 5,15, 8,14)( 6,16, 7,13)$ |
4F-1 | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,10, 4,12)( 2, 9, 3,11)( 5,14, 8,15)( 6,13, 7,16)$ |
4G1 | $4^{3},2,1^{2}$ | $8$ | $4$ | $10$ | $( 1, 4, 5, 7)( 2, 3, 6, 8)(11,15,12,16)(13,14)$ |
4G-1 | $4^{3},2,1^{2}$ | $8$ | $4$ | $10$ | $( 1, 5, 2, 6)( 7, 8)( 9,15,13,11)(10,16,14,12)$ |
4H1 | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,15, 4,14)( 2,16, 3,13)( 5,12, 8,10)( 6,11, 7, 9)$ |
4H-1 | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,14, 4,15)( 2,13, 3,16)( 5,10, 8,12)( 6, 9, 7,11)$ |
4I1 | $4^{3},2,1^{2}$ | $8$ | $4$ | $10$ | $( 1, 7, 6, 3)( 2, 8, 5, 4)( 9,14,10,13)(15,16)$ |
4I-1 | $4^{3},2,1^{2}$ | $8$ | $4$ | $10$ | $( 1, 2)( 3, 8, 4, 7)( 9,11,14,16)(10,12,13,15)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F1 | 4F-1 | 4G1 | 4G-1 | 4H1 | 4H-1 | 4I1 | 4I-1 | ||
Size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2D | 2D | 2A | 2G | 2G | 2H | 2H | 2G | 2G | 2H | 2H | |
Type | ||||||||||||||||||||||||
128.859.1a | R | |||||||||||||||||||||||
128.859.1b | R | |||||||||||||||||||||||
128.859.1c | R | |||||||||||||||||||||||
128.859.1d | R | |||||||||||||||||||||||
128.859.1e | R | |||||||||||||||||||||||
128.859.1f | R | |||||||||||||||||||||||
128.859.1g | R | |||||||||||||||||||||||
128.859.1h | R | |||||||||||||||||||||||
128.859.1i1 | C | |||||||||||||||||||||||
128.859.1i2 | C | |||||||||||||||||||||||
128.859.1j1 | C | |||||||||||||||||||||||
128.859.1j2 | C | |||||||||||||||||||||||
128.859.1k1 | C | |||||||||||||||||||||||
128.859.1k2 | C | |||||||||||||||||||||||
128.859.1l1 | C | |||||||||||||||||||||||
128.859.1l2 | C | |||||||||||||||||||||||
128.859.2a | R | |||||||||||||||||||||||
128.859.2b | R | |||||||||||||||||||||||
128.859.2c | R | |||||||||||||||||||||||
128.859.2d | R | |||||||||||||||||||||||
128.859.4a | R | |||||||||||||||||||||||
128.859.4b | R | |||||||||||||||||||||||
128.859.8a | R |
Regular extensions
Data not computed