Properties

Label 2.1.16.50b1.56
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(50\)
Galois group $C_2^7:F_8:C_3$ (as 16T1800)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 12 x^{12} + 8 x^{11} + 4 x^{10} + 8 x^{9} + 8 x^{5} + 8 x^{3} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $50$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{20}{7}, \frac{20}{7}, \frac{20}{7}, \frac{15}{4}]$
Visible Swan slopes:$[\frac{13}{7},\frac{13}{7},\frac{13}{7},\frac{11}{4}]$
Means:$\langle\frac{13}{14}, \frac{39}{28}, \frac{13}{8}, \frac{35}{16}\rangle$
Rams:$(\frac{13}{7}, \frac{13}{7}, \frac{13}{7}, 9)$
Jump set:$[1, 3, 7, 15, 31]$
Roots of unity:$2$

Intermediate fields

2.1.8.20a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 12 x^{12} + 8 x^{11} + 4 x^{10} + 8 x^{9} + 8 x^{5} + 8 x^{3} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[35, 26, 26, 16, 0]$

Invariants of the Galois closure

Galois degree: $21504$
Galois group: $C_2^7:F_8:C_3$ (as 16T1800)
Inertia group: $C_2^7:F_8$ (as 16T1694)
Wild inertia group: not computed
Galois unramified degree: $3$
Galois tame degree: $7$
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model: $x^{16} - 16 x^{14} + 168 x^{12} - 1456 x^{10} + 9156 x^{8} - 22176 x^{6} + 54320 x^{4} - 60544 x^{2} + 58564$ Copy content Toggle raw display