Properties

Label 2.1.16.48d1.25
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(48\)
Galois group $C_2^4.D_4$ (as 16T297)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 2 x^{12} + 8 x^{5} + 8 x^{2} + 8 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $48$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 2, \frac{7}{2}, \frac{7}{2}]$
Visible Swan slopes:$[1,1,\frac{5}{2},\frac{5}{2}]$
Means:$\langle\frac{1}{2}, \frac{3}{4}, \frac{13}{8}, \frac{33}{16}\rangle$
Rams:$(1, 1, 7, 7)$
Jump set:$[1, 3, 11, 27, 43]$
Roots of unity:$4 = 2^{ 2 }$

Intermediate fields

$\Q_{2}(\sqrt{-1})$, 2.1.4.6a1.1, 2.1.8.20b1.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 2 x^{12} + 8 x^{5} + 8 x^{2} + 8 x + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{12} + 1$,$z^3 + 1$
Associated inertia:$2$,$2$
Indices of inseparability:$[33, 28, 12, 12, 0]$

Invariants of the Galois closure

Galois degree: $128$
Galois group: $C_2^4.D_4$ (as 16T297)
Inertia group: $C_4:D_4$ (as 16T51)
Wild inertia group: $C_4:D_4$
Galois unramified degree: $4$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]$
Galois Swan slopes: $[1,1,2,\frac{5}{2},\frac{5}{2}]$
Galois mean slope: $3.1875$
Galois splitting model: $x^{16} - 4 x^{14} + 44 x^{12} - 24 x^{10} + 404 x^{8} + 792 x^{6} + 3200 x^{4} + 1040 x^{2} + 100$ Copy content Toggle raw display