Defining polynomial
\(x^{16} + 2 x^{12} + 8 x^{5} + 8 x^{2} + 8 x + 2\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $48$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$: | $C_2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[2, 2, \frac{7}{2}, \frac{7}{2}]$ |
Visible Swan slopes: | $[1,1,\frac{5}{2},\frac{5}{2}]$ |
Means: | $\langle\frac{1}{2}, \frac{3}{4}, \frac{13}{8}, \frac{33}{16}\rangle$ |
Rams: | $(1, 1, 7, 7)$ |
Jump set: | $[1, 3, 11, 27, 43]$ |
Roots of unity: | $4 = 2^{ 2 }$ |
Intermediate fields
$\Q_{2}(\sqrt{-1})$, 2.1.4.6a1.1, 2.1.8.20b1.9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{16} + 2 x^{12} + 8 x^{5} + 8 x^{2} + 8 x + 2 \)
|
Ramification polygon
Residual polynomials: | $z^{12} + 1$,$z^3 + 1$ |
Associated inertia: | $2$,$2$ |
Indices of inseparability: | $[33, 28, 12, 12, 0]$ |
Invariants of the Galois closure
Galois degree: | $128$ |
Galois group: | $C_2^4.D_4$ (as 16T297) |
Inertia group: | $C_4:D_4$ (as 16T51) |
Wild inertia group: | $C_4:D_4$ |
Galois unramified degree: | $4$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]$ |
Galois Swan slopes: | $[1,1,2,\frac{5}{2},\frac{5}{2}]$ |
Galois mean slope: | $3.1875$ |
Galois splitting model: |
$x^{16} - 4 x^{14} + 44 x^{12} - 24 x^{10} + 404 x^{8} + 792 x^{6} + 3200 x^{4} + 1040 x^{2} + 100$
|