Defining polynomial
\(x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 6\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $42$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $-1$ |
$\Aut(K/\Q_{2})$: | $C_2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[2, 2, 2, \frac{7}{2}]$ |
Visible Swan slopes: | $[1,1,1,\frac{5}{2}]$ |
Means: | $\langle\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{27}{16}\rangle$ |
Rams: | $(1, 1, 1, 13)$ |
Jump set: | $[1, 2, 7, 14, 32]$ |
Roots of unity: | $2$ |
Intermediate fields
$\Q_{2}(\sqrt{-5})$, 2.1.4.6a1.2, 2.1.8.14a4.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 6 \)
|
Ramification polygon
Residual polynomials: | $z^{14} + z^6 + z^2 + 1$,$z + 1$ |
Associated inertia: | $4$,$1$ |
Indices of inseparability: | $[27, 14, 12, 8, 0]$ |
Invariants of the Galois closure
Galois degree: | $128$ |
Galois group: | $C_2^4.D_4$ (as 16T297) |
Inertia group: | $D_4:C_2^2$ (as 16T18) |
Wild inertia group: | $D_4:C_2^2$ |
Galois unramified degree: | $4$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 2, 2, 3, \frac{7}{2}]$ |
Galois Swan slopes: | $[1,1,1,2,\frac{5}{2}]$ |
Galois mean slope: | $2.9375$ |
Galois splitting model: |
$x^{16} - 8 x^{14} + 20 x^{12} + 12 x^{10} + 64 x^{8} - 32 x^{6} + 80 x^{4} - 72 x^{2} + 36$
|