Properties

Label 2.1.16.30b1.34
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(30\)
Galois group $C_2^7:F_8:C_3$ (as 16T1800)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 2 x^{15} + 4 x^{12} + 4 x^{3} + 2 x^{2} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $30$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}, \frac{11}{4}]$
Visible Swan slopes:$[\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{7}{4}]$
Means:$\langle\frac{1}{14}, \frac{3}{28}, \frac{1}{8}, \frac{15}{16}\rangle$
Rams:$(\frac{1}{7}, \frac{1}{7}, \frac{1}{7}, 13)$
Jump set:$[1, 2, 4, 9, 25]$
Roots of unity:$2$

Intermediate fields

2.1.8.8a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 2 x^{15} + 4 x^{12} + 4 x^{3} + 2 x^{2} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[15, 2, 2, 2, 0]$

Invariants of the Galois closure

Galois degree: $21504$
Galois group: $C_2^7:F_8:C_3$ (as 16T1800)
Inertia group: $C_2^7:F_8$ (as 16T1694)
Wild inertia group: not computed
Galois unramified degree: $3$
Galois tame degree: $7$
Galois Artin slopes: $[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}, \frac{18}{7}, \frac{18}{7}, \frac{18}{7}, \frac{19}{7}, \frac{19}{7}, \frac{19}{7}, \frac{11}{4}]$
Galois Swan slopes: $[\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{11}{7},\frac{11}{7},\frac{11}{7},\frac{12}{7},\frac{12}{7},\frac{12}{7},\frac{7}{4}]$
Galois mean slope: $2.7117745535714284$
Galois splitting model: $x^{16} - 4 x^{14} + 28 x^{12} + 112 x^{8} + 560 x^{6} + 672 x^{4} + 320 x^{2} + 64$ Copy content Toggle raw display