Properties

Label 2.1.12.18b1.5
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(18\)
Galois group $C_2 \times S_4$ (as 12T24)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 2 x^{9} + 2 x^{7} + 2 x^{2} + 6\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification index $e$: $12$
Residue field degree $f$: $1$
Discriminant exponent $c$: $18$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2^2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{4}{3}, 2]$
Visible Swan slopes:$[\frac{1}{3},1]$
Means:$\langle\frac{1}{6}, \frac{7}{12}\rangle$
Rams:$(1, 5)$
Jump set:$[3, 7, 24]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{-5})$, 2.1.3.2a1.1, 2.1.6.6a1.1, 2.1.6.8a1.3, 2.1.6.8a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{12} + 2 x^{9} + 2 x^{7} + 2 x^{2} + 6 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$2$,$1$,$1$
Indices of inseparability:$[7, 2, 0]$

Invariants of the Galois closure

Galois degree: $48$
Galois group: $C_2\times S_4$ (as 12T24)
Inertia group: $C_2\times A_4$ (as 12T7)
Wild inertia group: $C_2^3$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{4}{3}, \frac{4}{3}, 2]$
Galois Swan slopes: $[\frac{1}{3},\frac{1}{3},1]$
Galois mean slope: $1.5833333333333333$
Galois splitting model:$x^{12} - 2 x^{11} + 8 x^{10} - 4 x^{9} + 5 x^{8} + 10 x^{7} - 14 x^{6} - 10 x^{5} + 5 x^{4} + 4 x^{3} + 8 x^{2} + 2 x + 1$