Properties

Label 2.1.10.16a1.3
Base \(\Q_{2}\)
Degree \(10\)
e \(10\)
f \(1\)
c \(16\)
Galois group $(C_2^4 : C_5):C_4$ (as 10T25)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{10} + 2 x^{7} + 4 x^{3} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $10$
Ramification index $e$: $10$
Residue field degree $f$: $1$
Discriminant exponent $c$: $16$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{12}{5}]$
Visible Swan slopes:$[\frac{7}{5}]$
Means:$\langle\frac{7}{10}\rangle$
Rams:$(7)$
Jump set:$[5, 15]$
Roots of unity:$2$

Intermediate fields

2.1.5.4a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{10} + 2 x^{7} + 4 x^{3} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + z^6 + 1$,$z + 1$
Associated inertia:$4$,$1$
Indices of inseparability:$[7, 0]$

Invariants of the Galois closure

Galois degree: $320$
Galois group: $C_2^4:F_5$ (as 10T25)
Inertia group: $C_2^4:C_5$ (as 10T8)
Wild inertia group: $C_2^4$
Galois unramified degree: $4$
Galois tame degree: $5$
Galois Artin slopes: $[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}]$
Galois Swan slopes: $[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5}]$
Galois mean slope: $2.3$
Galois splitting model:$x^{10} - 5 x^{8} + 10 x^{6} - 30 x^{4} + 5 x^{2} - 5$