Defining polynomial
\(x^{10} + 2 x^{7} + 4 x^{3} + 2\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $10$ |
Ramification index $e$: | $10$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $16$ |
Discriminant root field: | $\Q_{2}(\sqrt{5})$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$: | $C_2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[\frac{12}{5}]$ |
Visible Swan slopes: | $[\frac{7}{5}]$ |
Means: | $\langle\frac{7}{10}\rangle$ |
Rams: | $(7)$ |
Jump set: | $[5, 15]$ |
Roots of unity: | $2$ |
Intermediate fields
2.1.5.4a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{10} + 2 x^{7} + 4 x^{3} + 2 \)
|
Ramification polygon
Residual polynomials: | $z^8 + z^6 + 1$,$z + 1$ |
Associated inertia: | $4$,$1$ |
Indices of inseparability: | $[7, 0]$ |
Invariants of the Galois closure
Galois degree: | $320$ |
Galois group: | $C_2^4:F_5$ (as 10T25) |
Inertia group: | $C_2^4:C_5$ (as 10T8) |
Wild inertia group: | $C_2^4$ |
Galois unramified degree: | $4$ |
Galois tame degree: | $5$ |
Galois Artin slopes: | $[\frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}]$ |
Galois Swan slopes: | $[\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5}]$ |
Galois mean slope: | $2.3$ |
Galois splitting model: | $x^{10} - 5 x^{8} + 10 x^{6} - 30 x^{4} + 5 x^{2} - 5$ |