Show commands:
Magma
magma: G := TransitiveGroup(10, 25);
Group action invariants
Degree $n$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $25$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $(C_2^4 : C_5):C_4$ | ||
CHM label: | $1/2[2^{5}]F(5)$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,7,9,3)(2,4,8,6)(5,10), (1,3,5,7,9)(2,4,6,8,10), (2,7)(5,10) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $20$: $F_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: $F_5$
Low degree siblings
10T24, 16T711, 20T77, 20T78, 20T79, 20T80, 20T83, 20T88, 32T9312, 40T206, 40T207, 40T296, 40T297, 40T298, 40T299, 40T300, 40T301, 40T302, 40T303Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 4, 9)( 5,10)$ |
$ 8, 1, 1 $ | $40$ | $8$ | $( 2, 3, 5, 9, 7, 8,10, 4)$ |
$ 8, 1, 1 $ | $40$ | $8$ | $( 2, 4, 5, 8, 7, 9,10, 3)$ |
$ 2, 2, 2, 2, 1, 1 $ | $20$ | $2$ | $( 2, 5)( 3, 4)( 7,10)( 8, 9)$ |
$ 4, 4, 1, 1 $ | $20$ | $4$ | $( 2, 5, 7,10)( 3, 4, 8, 9)$ |
$ 2, 2, 2, 2, 1, 1 $ | $5$ | $2$ | $( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
$ 4, 2, 2, 2 $ | $40$ | $4$ | $( 1, 2)( 3, 5, 8,10)( 4, 9)( 6, 7)$ |
$ 5, 5 $ | $64$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)$ |
$ 4, 4, 2 $ | $40$ | $4$ | $( 1, 2, 4, 3)( 5,10)( 6, 7, 9, 8)$ |
$ 4, 4, 2 $ | $40$ | $4$ | $( 1, 2, 5, 4)( 3, 8)( 6, 7,10, 9)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $320=2^{6} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 320.1635 | magma: IdentifyGroup(G);
|
Character table: |
2 6 5 3 3 4 4 6 3 . 3 3 5 1 . . . . . . . 1 . . 1a 2a 8a 8b 2b 4a 2c 4b 5a 4c 4d 2P 1a 1a 4a 4a 1a 2c 1a 2a 5a 2b 2b 3P 1a 2a 8b 8a 2b 4a 2c 4b 5a 4d 4c 5P 1a 2a 8a 8b 2b 4a 2c 4b 1a 4c 4d 7P 1a 2a 8b 8a 2b 4a 2c 4b 5a 4d 4c X.1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 1 -1 -1 1 1 1 1 1 -1 -1 X.3 1 1 A -A -1 -1 1 -1 1 A -A X.4 1 1 -A A -1 -1 1 -1 1 -A A X.5 4 4 . . . . 4 . -1 . . X.6 5 1 -1 -1 1 1 -3 -1 . 1 1 X.7 5 1 1 1 1 1 -3 -1 . -1 -1 X.8 5 1 A -A -1 -1 -3 1 . -A A X.9 5 1 -A A -1 -1 -3 1 . A -A X.10 10 -2 . . -2 2 2 . . . . X.11 10 -2 . . 2 -2 2 . . . . A = -E(4) = -Sqrt(-1) = -i |
magma: CharacterTable(G);