Properties

Label 197.1.9.8a1.1
Base \(\Q_{197}\)
Degree \(9\)
e \(9\)
f \(1\)
c \(8\)
Galois group $D_{9}$ (as 9T3)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{9} + 197\) Copy content Toggle raw display

Invariants

Base field: $\Q_{197}$
Degree $d$: $9$
Ramification index $e$: $9$
Residue field degree $f$: $1$
Discriminant exponent $c$: $8$
Discriminant root field: $\Q_{197}$
Root number: $1$
$\Aut(K/\Q_{197})$: $C_1$
This field is not Galois over $\Q_{197}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$196 = (197 - 1)$

Intermediate fields

197.1.3.2a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{197}$
Relative Eisenstein polynomial: \( x^{9} + 197 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 9 z^7 + 36 z^6 + 84 z^5 + 126 z^4 + 126 z^3 + 84 z^2 + 36 z + 9$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $18$
Galois group: $D_9$ (as 9T3)
Inertia group: $C_9$ (as 9T1)
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $9$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.8888888888888888$
Galois splitting model:not computed