Properties

Label 197.1.7.6a1.3
Base \(\Q_{197}\)
Degree \(7\)
e \(7\)
f \(1\)
c \(6\)
Galois group $C_7$ (as 7T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{7} + 788\) Copy content Toggle raw display

Invariants

Base field: $\Q_{197}$
Degree $d$: $7$
Ramification index $e$: $7$
Residue field degree $f$: $1$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{197}$
Root number: $1$
$\Aut(K/\Q_{197})$ $=$$\Gal(K/\Q_{197})$: $C_7$
This field is Galois and abelian over $\Q_{197}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$196 = (197 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 197 }$.

Canonical tower

Unramified subfield:$\Q_{197}$
Relative Eisenstein polynomial: \( x^{7} + 788 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^6 + 7 z^5 + 21 z^4 + 35 z^3 + 35 z^2 + 21 z + 7$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $7$
Galois group: $C_7$ (as 7T1)
Inertia group: $C_7$ (as 7T1)
Wild inertia group: $C_1$
Galois unramified degree: $1$
Galois tame degree: $7$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.8571428571428571$
Galois splitting model:not computed