Properties

Label 197.1.18.17a1.2
Base \(\Q_{197}\)
Degree \(18\)
e \(18\)
f \(1\)
c \(17\)
Galois group $D_{18}$ (as 18T13)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{18} + 394\) Copy content Toggle raw display

Invariants

Base field: $\Q_{197}$
Degree $d$: $18$
Ramification index $e$: $18$
Residue field degree $f$: $1$
Discriminant exponent $c$: $17$
Discriminant root field: $\Q_{197}(\sqrt{197\cdot 2})$
Root number: $-1$
$\Aut(K/\Q_{197})$: $C_2$
This field is not Galois over $\Q_{197}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$196 = (197 - 1)$

Intermediate fields

$\Q_{197}(\sqrt{197\cdot 2})$, 197.1.3.2a1.1, 197.1.6.5a1.2, 197.1.9.8a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{197}$
Relative Eisenstein polynomial: \( x^{18} + 394 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{17} + 18 z^{16} + 153 z^{15} + 28 z^{14} + 105 z^{13} + 97 z^{12} + 46 z^{11} + 107 z^{10} + 24 z^9 + 158 z^8 + 24 z^7 + 107 z^6 + 46 z^5 + 97 z^4 + 105 z^3 + 28 z^2 + 153 z + 18$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $36$
Galois group: $D_{18}$ (as 18T13)
Inertia group: $C_{18}$ (as 18T1)
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $18$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.9444444444444444$
Galois splitting model:not computed