Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $13$ | |
| Group : | $D_{18}$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11,3,14,5,15,8,18,10,2,12,4,13,6,16,7,17,9), (1,18)(2,17)(3,15)(4,16)(5,14)(6,13)(7,12)(8,11)(9,10), (1,7)(2,8)(3,6)(4,5)(9,17)(10,18)(11,16)(12,15)(13,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ 18: $D_{9}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 6: $D_{6}$
Degree 9: $D_{9}$
Low degree siblings
18T13Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $9$ | $2$ | $( 3,17)( 4,18)( 5,16)( 6,15)( 7,14)( 8,13)( 9,11)(10,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 2)( 3,18)( 4,17)( 5,15)( 6,16)( 7,13)( 8,14)( 9,12)(10,11)$ |
| $ 9, 9 $ | $2$ | $9$ | $( 1, 3, 5, 8,10,12,13,16,17)( 2, 4, 6, 7, 9,11,14,15,18)$ |
| $ 18 $ | $2$ | $18$ | $( 1, 4, 5, 7,10,11,13,15,17, 2, 3, 6, 8, 9,12,14,16,18)$ |
| $ 9, 9 $ | $2$ | $9$ | $( 1, 5,10,13,17, 3, 8,12,16)( 2, 6, 9,14,18, 4, 7,11,15)$ |
| $ 18 $ | $2$ | $18$ | $( 1, 6,10,14,17, 4, 8,11,16, 2, 5, 9,13,18, 3, 7,12,15)$ |
| $ 6, 6, 6 $ | $2$ | $6$ | $( 1, 7,13, 2, 8,14)( 3, 9,16, 4,10,15)( 5,11,17, 6,12,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 8,13)( 2, 7,14)( 3,10,16)( 4, 9,15)( 5,12,17)( 6,11,18)$ |
| $ 18 $ | $2$ | $18$ | $( 1, 9,17, 7,16, 6,13, 4,12, 2,10,18, 8,15, 5,14, 3,11)$ |
| $ 9, 9 $ | $2$ | $9$ | $( 1,10,17, 8,16, 5,13, 3,12)( 2, 9,18, 7,15, 6,14, 4,11)$ |
Group invariants
| Order: | $36=2^{2} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [36, 4] |
| Character table: |
2 2 2 2 2 1 1 1 1 1 1 1 1
3 2 . 2 . 2 2 2 2 2 2 2 2
1a 2a 2b 2c 9a 18a 9b 18b 6a 3a 18c 9c
2P 1a 1a 1a 1a 9b 9b 9c 9c 3a 3a 9a 9a
3P 1a 2a 2b 2c 3a 6a 3a 6a 2b 1a 6a 3a
5P 1a 2a 2b 2c 9c 18c 9a 18a 6a 3a 18b 9b
7P 1a 2a 2b 2c 9b 18b 9c 18c 6a 3a 18a 9a
11P 1a 2a 2b 2c 9b 18b 9c 18c 6a 3a 18a 9a
13P 1a 2a 2b 2c 9c 18c 9a 18a 6a 3a 18b 9b
17P 1a 2a 2b 2c 9a 18a 9b 18b 6a 3a 18c 9c
X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1
X.3 1 -1 1 -1 1 1 1 1 1 1 1 1
X.4 1 1 -1 -1 1 -1 1 -1 -1 1 -1 1
X.5 2 . 2 . -1 -1 -1 -1 2 2 -1 -1
X.6 2 . -2 . -1 1 -1 1 -2 2 1 -1
X.7 2 . 2 . A A B B -1 -1 C C
X.8 2 . 2 . B B C C -1 -1 A A
X.9 2 . 2 . C C A A -1 -1 B B
X.10 2 . -2 . A -A B -B 1 -1 -C C
X.11 2 . -2 . B -B C -C 1 -1 -A A
X.12 2 . -2 . C -C A -A 1 -1 -B B
A = E(9)^2+E(9)^7
B = E(9)^4+E(9)^5
C = -E(9)^2-E(9)^4-E(9)^5-E(9)^7
|