Properties

Label 191.2.6.10a1.2
Base \(\Q_{191}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(10\)
Galois group $D_6$ (as 12T3)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 190 x + 19 )^{6} + 191$ Copy content Toggle raw display

Invariants

Base field: $\Q_{191}$
Degree $d$: $12$
Ramification index $e$: $6$
Residue field degree $f$: $2$
Discriminant exponent $c$: $10$
Discriminant root field: $\Q_{191}$
Root number: $1$
$\Aut(K/\Q_{191})$ $=$$\Gal(K/\Q_{191})$: $D_6$
This field is Galois over $\Q_{191}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$36480 = (191^{ 2 } - 1)$

Intermediate fields

$\Q_{191}(\sqrt{7})$, $\Q_{191}(\sqrt{191})$, $\Q_{191}(\sqrt{191\cdot 7})$, 191.1.3.2a1.1 x3, 191.2.2.2a1.2, 191.2.3.4a1.2, 191.1.6.5a1.2 x3, 191.1.6.5a1.1 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{191}(\sqrt{7})$ $\cong \Q_{191}(t)$ where $t$ is a root of \( x^{2} + 190 x + 19 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{6} + 191 \) $\ \in\Q_{191}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^5 + 6 z^4 + 15 z^3 + 20 z^2 + 15 z + 6$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $12$
Galois group: $D_6$ (as 12T3)
Inertia group: Intransitive group isomorphic to $C_6$
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $6$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.8333333333333334$
Galois splitting model: $x^{12} - 6 x^{11} + 21 x^{10} - 50 x^{9} + 90 x^{8} - 126 x^{7} - 241 x^{6} + 1020 x^{5} + 2955 x^{4} - 7690 x^{3} + 2886 x^{2} + 1140 x + 36100$ Copy content Toggle raw display