Properties

Label 191.2.6.10a
Base 191.1.1.0a1.1
Degree \(12\)
e \(6\)
f \(2\)
c \(10\)

Related objects

Downloads

Learn more

Defining polynomial over unramified subextension

$x^{6} + 191d_{0}$

Invariants

Residue field characteristic: $191$
Degree: $12$
Base field: $\Q_{191}$
Ramification index $e$: $6$
Residue field degree $f$: $2$
Discriminant exponent $c$: $10$
Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $4$ (complete)
Ambiguity: $12$
Mass: $1$
Absolute Mass: $1/2$

Varying

Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Galois groups and Hidden Artin slopes

Select desired size of Galois group.

Fields


Showing all 4

  displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
191.2.6.10a1.1 $( x^{2} + 190 x + 19 )^{6} + 191 x$ $C_3\times (C_3 : C_4)$ (as 12T19) $36$ $6$ $[\ ]_{6}^{6}$ $[\ ]_{6}^{6}$ $[\ ]^{3}$ $[\ ]^{3}$ $[0]$ $[1]$ $z^5 + 6 z^4 + 15 z^3 + 20 z^2 + 15 z + 6$ undefined
191.2.6.10a1.2 $( x^{2} + 190 x + 19 )^{6} + 191$ $D_6$ (as 12T3) $12$ $12$ $[\ ]_{6}^{2}$ $[\ ]_{6}^{2}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^5 + 6 z^4 + 15 z^3 + 20 z^2 + 15 z + 6$ undefined
191.2.6.10a1.3 $( x^{2} + 190 x + 19 )^{6} + 191 x + 32852$ $C_6\times S_3$ (as 12T18) $36$ $6$ $[\ ]_{6}^{6}$ $[\ ]_{6}^{6}$ $[\ ]^{3}$ $[\ ]^{3}$ $[0]$ $[1]$ $z^5 + 6 z^4 + 15 z^3 + 20 z^2 + 15 z + 6$ undefined
191.2.6.10a1.4 $( x^{2} + 190 x + 19 )^{6} + 33043 x + 32852$ $C_3 : C_4$ (as 12T5) $12$ $12$ $[\ ]_{6}^{2}$ $[\ ]_{6}^{2}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^5 + 6 z^4 + 15 z^3 + 20 z^2 + 15 z + 6$ undefined
  displayed columns for results