Properties

Label 181.6.1.0a1.1
Base \(\Q_{181}\)
Degree \(6\)
e \(1\)
f \(6\)
c \(0\)
Galois group $C_6$ (as 6T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{6} + 177 x^{3} + 163 x^{2} + 169 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{181}$
Degree $d$: $6$
Ramification index $e$: $1$
Residue field degree $f$: $6$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{181}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{181})$ $=$$\Gal(K/\Q_{181})$: $C_6$
This field is Galois and abelian over $\Q_{181}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$35161828327080 = (181^{ 6 } - 1)$

Intermediate fields

$\Q_{181}(\sqrt{2})$, 181.3.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:181.6.1.0a1.1 $\cong \Q_{181}(t)$ where $t$ is a root of \( x^{6} + 177 x^{3} + 163 x^{2} + 169 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 181 \) $\ \in\Q_{181}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois degree: $6$
Galois group: $C_6$ (as 6T1)
Inertia group: trivial
Wild inertia group: $C_1$
Galois unramified degree: $6$
Galois tame degree: $1$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.0$
Galois splitting model:$x^{6} - x^{5} + 2 x^{4} + 8 x^{3} - x^{2} - 5 x + 7$