Properties

Label 181.2.6.10a1.6
Base \(\Q_{181}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(10\)
Galois group $C_6\times C_2$ (as 12T2)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 177 x + 2 )^{6} + 724 x + 32399$ Copy content Toggle raw display

Invariants

Base field: $\Q_{181}$
Degree $d$: $12$
Ramification index $e$: $6$
Residue field degree $f$: $2$
Discriminant exponent $c$: $10$
Discriminant root field: $\Q_{181}$
Root number: $-1$
$\Aut(K/\Q_{181})$ $=$$\Gal(K/\Q_{181})$: $C_2\times C_6$
This field is Galois and abelian over $\Q_{181}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$32760 = (181^{ 2 } - 1)$

Intermediate fields

$\Q_{181}(\sqrt{2})$, $\Q_{181}(\sqrt{181})$, $\Q_{181}(\sqrt{181\cdot 2})$, 181.1.3.2a1.2, 181.2.2.2a1.2, 181.2.3.4a1.3, 181.1.6.5a1.5, 181.1.6.5a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{181}(\sqrt{2})$ $\cong \Q_{181}(t)$ where $t$ is a root of \( x^{2} + 177 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{6} + 724 t + 32399 \) $\ \in\Q_{181}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^5 + 6 z^4 + 15 z^3 + 20 z^2 + 15 z + 6$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $12$
Galois group: $C_2\times C_6$ (as 12T2)
Inertia group: Intransitive group isomorphic to $C_6$
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $6$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.8333333333333334$
Galois splitting model:not computed