Properties

Label 181.2.10.18a1.8
Base \(\Q_{181}\)
Degree \(20\)
e \(10\)
f \(2\)
c \(18\)
Galois group $C_2\times C_{10}$ (as 20T3)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 177 x + 2 )^{10} + 2172 x + 28598$ Copy content Toggle raw display

Invariants

Base field: $\Q_{181}$
Degree $d$: $20$
Ramification index $e$: $10$
Residue field degree $f$: $2$
Discriminant exponent $c$: $18$
Discriminant root field: $\Q_{181}$
Root number: $-1$
$\Aut(K/\Q_{181})$ $=$$\Gal(K/\Q_{181})$: $C_2\times C_{10}$
This field is Galois and abelian over $\Q_{181}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$32760 = (181^{ 2 } - 1)$

Intermediate fields

$\Q_{181}(\sqrt{2})$, $\Q_{181}(\sqrt{181})$, $\Q_{181}(\sqrt{181\cdot 2})$, 181.2.2.2a1.2, 181.1.5.4a1.5, 181.2.5.8a1.4, 181.1.10.9a1.5, 181.1.10.9a1.10

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{181}(\sqrt{2})$ $\cong \Q_{181}(t)$ where $t$ is a root of \( x^{2} + 177 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{10} + 2172 t + 28598 \) $\ \in\Q_{181}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^9 + 10 z^8 + 45 z^7 + 120 z^6 + 29 z^5 + 71 z^4 + 29 z^3 + 120 z^2 + 45 z + 10$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $20$
Galois group: $C_2\times C_{10}$ (as 20T3)
Inertia group: Intransitive group isomorphic to $C_{10}$
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $10$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.9$
Galois splitting model:not computed