Defining polynomial
|
$( x^{2} + 152 x + 5 )^{10} + 157$
|
Invariants
| Base field: | $\Q_{157}$ |
| Degree $d$: | $20$ |
| Ramification index $e$: | $10$ |
| Residue field degree $f$: | $2$ |
| Discriminant exponent $c$: | $18$ |
| Discriminant root field: | $\Q_{157}$ |
| Root number: | $-1$ |
| $\Aut(K/\Q_{157})$: | $C_2^2$ |
| This field is not Galois over $\Q_{157}.$ | |
| Visible Artin slopes: | $[\ ]$ |
| Visible Swan slopes: | $[\ ]$ |
| Means: | $\langle\ \rangle$ |
| Rams: | $(\ )$ |
| Jump set: | undefined |
| Roots of unity: | $24648 = (157^{ 2 } - 1)$ |
Intermediate fields
| $\Q_{157}(\sqrt{2})$, $\Q_{157}(\sqrt{157})$, $\Q_{157}(\sqrt{157\cdot 2})$, 157.2.2.2a1.2, 157.1.5.4a1.1, 157.2.5.8a1.1, 157.1.10.9a1.1, 157.1.10.9a1.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | $\Q_{157}(\sqrt{2})$ $\cong \Q_{157}(t)$ where $t$ is a root of
\( x^{2} + 152 x + 5 \)
|
| Relative Eisenstein polynomial: |
\( x^{10} + 157 \)
$\ \in\Q_{157}(t)[x]$
|
Ramification polygon
| Residual polynomials: | $z^9 + 10 z^8 + 45 z^7 + 120 z^6 + 53 z^5 + 95 z^4 + 53 z^3 + 120 z^2 + 45 z + 10$ |
| Associated inertia: | $2$ |
| Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
| Galois degree: | $40$ |
| Galois group: | $C_2\times F_5$ (as 20T13) |
| Inertia group: | Intransitive group isomorphic to $C_{10}$ |
| Wild inertia group: | $C_1$ |
| Galois unramified degree: | $4$ |
| Galois tame degree: | $10$ |
| Galois Artin slopes: | $[\ ]$ |
| Galois Swan slopes: | $[\ ]$ |
| Galois mean slope: | $0.9$ |
| Galois splitting model: | not computed |