Properties

Label 157.2.10.18a1.2
Base \(\Q_{157}\)
Degree \(20\)
e \(10\)
f \(2\)
c \(18\)
Galois group $C_2\times F_5$ (as 20T13)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 152 x + 5 )^{10} + 157$ Copy content Toggle raw display

Invariants

Base field: $\Q_{157}$
Degree $d$: $20$
Ramification index $e$: $10$
Residue field degree $f$: $2$
Discriminant exponent $c$: $18$
Discriminant root field: $\Q_{157}$
Root number: $-1$
$\Aut(K/\Q_{157})$: $C_2^2$
This field is not Galois over $\Q_{157}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$24648 = (157^{ 2 } - 1)$

Intermediate fields

$\Q_{157}(\sqrt{2})$, $\Q_{157}(\sqrt{157})$, $\Q_{157}(\sqrt{157\cdot 2})$, 157.2.2.2a1.2, 157.1.5.4a1.1, 157.2.5.8a1.1, 157.1.10.9a1.1, 157.1.10.9a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{157}(\sqrt{2})$ $\cong \Q_{157}(t)$ where $t$ is a root of \( x^{2} + 152 x + 5 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{10} + 157 \) $\ \in\Q_{157}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^9 + 10 z^8 + 45 z^7 + 120 z^6 + 53 z^5 + 95 z^4 + 53 z^3 + 120 z^2 + 45 z + 10$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $40$
Galois group: $C_2\times F_5$ (as 20T13)
Inertia group: Intransitive group isomorphic to $C_{10}$
Wild inertia group: $C_1$
Galois unramified degree: $4$
Galois tame degree: $10$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.9$
Galois splitting model:not computed