Properties

Label 13.8.4.2
Base \(\Q_{13}\)
Degree \(8\)
e \(2\)
f \(4\)
c \(4\)
Galois group $C_8$ (as 8T1)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{4} + 3 x^{2} + 12 x + 2 )^{2} + \left(-6 x^{2} - 24 x + 512\right) ( x^{4} + 3 x^{2} + 12 x + 2 ) + 72 x^{3} - 27756 x^{2} - 6144 x + 56094$ Copy content Toggle raw display

Invariants

Base field: $\Q_{13}$
Degree $d$: $8$
Ramification exponent $e$: $2$
Residue field degree $f$: $4$
Discriminant exponent $c$: $4$
Discriminant root field: $\Q_{13}(\sqrt{2})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 13 }) }$: $8$
This field is Galois and abelian over $\Q_{13}.$
Visible slopes:None

Intermediate fields

$\Q_{13}(\sqrt{2})$, 13.4.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:13.4.0.1 $\cong \Q_{13}(t)$ where $t$ is a root of \( x^{4} + 3 x^{2} + 12 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 13 t \) $\ \in\Q_{13}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $C_8$ (as 8T1)
Inertia group: Intransitive group isomorphic to $C_2$
Wild inertia group: $C_1$
Unramified degree: $4$
Tame degree: $2$
Wild slopes: None
Galois mean slope: $1/2$
Galois splitting model:$x^{8} + 104 x^{6} + 3380 x^{4} + 35152 x^{2} + 57122$