Properties

Label 13.1.20.19a1.2
Base \(\Q_{13}\)
Degree \(20\)
e \(20\)
f \(1\)
c \(19\)
Galois group $C_4\times F_5$ (as 20T20)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{20} + 26\) Copy content Toggle raw display

Invariants

Base field: $\Q_{13}$
Degree $d$: $20$
Ramification index $e$: $20$
Residue field degree $f$: $1$
Discriminant exponent $c$: $19$
Discriminant root field: $\Q_{13}(\sqrt{13\cdot 2})$
Root number: $-1$
$\Aut(K/\Q_{13})$: $C_4$
This field is not Galois over $\Q_{13}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$12 = (13 - 1)$

Intermediate fields

$\Q_{13}(\sqrt{13\cdot 2})$, 13.1.4.3a1.2, 13.1.5.4a1.1, 13.1.10.9a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{13}$
Relative Eisenstein polynomial: \( x^{20} + 26 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{19} + 7 z^{18} + 8 z^{17} + 9 z^{16} + 9 z^{15} + 8 z^{14} + 7 z^{13} + z^{12} + z^6 + 7 z^5 + 8 z^4 + 9 z^3 + 9 z^2 + 8 z + 7$
Associated inertia:$4$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $80$
Galois group: $C_4\times F_5$ (as 20T20)
Inertia group: $C_{20}$ (as 20T1)
Wild inertia group: $C_1$
Galois unramified degree: $4$
Galois tame degree: $20$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.95$
Galois splitting model:not computed