Defining polynomial
|
\(x^{20} + 26\)
|
Invariants
| Base field: | $\Q_{13}$ |
| Degree $d$: | $20$ |
| Ramification index $e$: | $20$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $19$ |
| Discriminant root field: | $\Q_{13}(\sqrt{13\cdot 2})$ |
| Root number: | $-1$ |
| $\Aut(K/\Q_{13})$: | $C_4$ |
| This field is not Galois over $\Q_{13}.$ | |
| Visible Artin slopes: | $[\ ]$ |
| Visible Swan slopes: | $[\ ]$ |
| Means: | $\langle\ \rangle$ |
| Rams: | $(\ )$ |
| Jump set: | undefined |
| Roots of unity: | $12 = (13 - 1)$ |
Intermediate fields
| $\Q_{13}(\sqrt{13\cdot 2})$, 13.1.4.3a1.2, 13.1.5.4a1.1, 13.1.10.9a1.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | $\Q_{13}$ |
| Relative Eisenstein polynomial: |
\( x^{20} + 26 \)
|
Ramification polygon
| Residual polynomials: | $z^{19} + 7 z^{18} + 8 z^{17} + 9 z^{16} + 9 z^{15} + 8 z^{14} + 7 z^{13} + z^{12} + z^6 + 7 z^5 + 8 z^4 + 9 z^3 + 9 z^2 + 8 z + 7$ |
| Associated inertia: | $4$ |
| Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
| Galois degree: | $80$ |
| Galois group: | $C_4\times F_5$ (as 20T20) |
| Inertia group: | $C_{20}$ (as 20T1) |
| Wild inertia group: | $C_1$ |
| Galois unramified degree: | $4$ |
| Galois tame degree: | $20$ |
| Galois Artin slopes: | $[\ ]$ |
| Galois Swan slopes: | $[\ ]$ |
| Galois mean slope: | $0.95$ |
| Galois splitting model: | not computed |