Properties

Label 11.2.11.22a53.1
Base \(\Q_{11}\)
Degree \(22\)
e \(11\)
f \(2\)
c \(22\)
Galois group $C_{11}^2:C_{20}$ (as 22T18)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 7 x + 2 )^{11} + \left(22 x + 99\right) ( x^{2} + 7 x + 2 ) + 11$ Copy content Toggle raw display

Invariants

Base field: $\Q_{11}$
Degree $d$: $22$
Ramification index $e$: $11$
Residue field degree $f$: $2$
Discriminant exponent $c$: $22$
Discriminant root field: $\Q_{11}$
Root number: $-1$
$\Aut(K/\Q_{11})$: $C_1$
This field is not Galois over $\Q_{11}.$
Visible Artin slopes:$[\frac{11}{10}]$
Visible Swan slopes:$[\frac{1}{10}]$
Means:$\langle\frac{1}{11}\rangle$
Rams:$(\frac{1}{10})$
Jump set:undefined
Roots of unity:$120 = (11^{ 2 } - 1)$

Intermediate fields

$\Q_{11}(\sqrt{2})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{11}(\sqrt{2})$ $\cong \Q_{11}(t)$ where $t$ is a root of \( x^{2} + 7 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{11} + \left(99 t + 66\right) x + 11 \) $\ \in\Q_{11}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + (4 t + 6)$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois degree: $2420$
Galois group: $C_{11}^2:C_{20}$ (as 22T18)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed