Show commands: Magma
Group invariants
| Abstract group: | $C_{11}^2:C_{20}$ |
| |
| Order: | $2420=2^{2} \cdot 5 \cdot 11^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $22$ |
| |
| Transitive number $t$: | $18$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,19,3,12,7,20,4,14,9,13,8,22,6,18,2,21,5,16,11,17)(10,15)$, $(1,19,4,20,6,17,11,15,7,21,8,14,5,13,3,16,9,18,2,12)(10,22)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $5$: $C_5$ $10$: $C_{10}$ $20$: 20T1 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 11: None
Low degree siblings
22T18 x 5, 44T62 x 6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{22}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{10},1^{2}$ | $121$ | $2$ | $10$ | $( 1, 5)( 2, 4)( 6,11)( 7,10)( 8, 9)(12,22)(13,21)(14,20)(15,19)(16,18)$ |
| 4A1 | $4^{5},2$ | $121$ | $4$ | $16$ | $( 1,12, 5,22)( 2,20, 4,14)( 3,17)( 6,19,11,15)( 7,16,10,18)( 8,13, 9,21)$ |
| 4A-1 | $4^{5},2$ | $121$ | $4$ | $16$ | $( 1,22, 5,12)( 2,14, 4,20)( 3,17)( 6,15,11,19)( 7,18,10,16)( 8,21, 9,13)$ |
| 5A1 | $5^{4},1^{2}$ | $121$ | $5$ | $16$ | $( 1, 6, 4, 7, 8)( 2,10, 9, 5,11)(12,19,14,16,13)(15,20,18,21,22)$ |
| 5A-1 | $5^{4},1^{2}$ | $121$ | $5$ | $16$ | $( 1, 8, 7, 4, 6)( 2,11, 5, 9,10)(12,13,16,14,19)(15,22,21,18,20)$ |
| 5A2 | $5^{4},1^{2}$ | $121$ | $5$ | $16$ | $( 1, 4, 8, 6, 7)( 2, 9,11,10, 5)(12,14,13,19,16)(15,18,22,20,21)$ |
| 5A-2 | $5^{4},1^{2}$ | $121$ | $5$ | $16$ | $( 1, 7, 6, 8, 4)( 2, 5,10,11, 9)(12,16,19,13,14)(15,21,20,22,18)$ |
| 10A1 | $10^{2},1^{2}$ | $121$ | $10$ | $18$ | $( 1,10, 6, 9, 4, 5, 7,11, 8, 2)(12,18,19,21,14,22,16,15,13,20)$ |
| 10A-1 | $10^{2},1^{2}$ | $121$ | $10$ | $18$ | $( 1, 2, 8,11, 7, 5, 4, 9, 6,10)(12,20,13,15,16,22,14,21,19,18)$ |
| 10A3 | $10^{2},1^{2}$ | $121$ | $10$ | $18$ | $( 1, 9, 7, 2, 6, 5, 8,10, 4,11)(12,21,16,20,19,22,13,18,14,15)$ |
| 10A-3 | $10^{2},1^{2}$ | $121$ | $10$ | $18$ | $( 1,11, 4,10, 8, 5, 6, 2, 7, 9)(12,15,14,18,13,22,19,20,16,21)$ |
| 11A | $11^{2}$ | $20$ | $11$ | $20$ | $( 1, 8, 4,11, 7, 3,10, 6, 2, 9, 5)(12,13,14,15,16,17,18,19,20,21,22)$ |
| 11B | $11^{2}$ | $20$ | $11$ | $20$ | $( 1, 9, 6, 3,11, 8, 5, 2,10, 7, 4)(12,18,13,19,14,20,15,21,16,22,17)$ |
| 11C | $11,1^{11}$ | $20$ | $11$ | $10$ | $(12,20,17,14,22,19,16,13,21,18,15)$ |
| 11D | $11^{2}$ | $20$ | $11$ | $20$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11)(12,14,16,18,20,22,13,15,17,19,21)$ |
| 11E | $11^{2}$ | $20$ | $11$ | $20$ | $( 1, 8, 4,11, 7, 3,10, 6, 2, 9, 5)(12,21,19,17,15,13,22,20,18,16,14)$ |
| 11F | $11^{2}$ | $20$ | $11$ | $20$ | $( 1,10, 8, 6, 4, 2,11, 9, 7, 5, 3)(12,20,17,14,22,19,16,13,21,18,15)$ |
| 20A1 | $20,2$ | $121$ | $20$ | $20$ | $( 1,13,10,20, 6,12, 9,18, 4,19, 5,21, 7,14,11,22, 8,16, 2,15)( 3,17)$ |
| 20A-1 | $20,2$ | $121$ | $20$ | $20$ | $( 1,15, 2,16, 8,22,11,14, 7,21, 5,19, 4,18, 9,12, 6,20,10,13)( 3,17)$ |
| 20A3 | $20,2$ | $121$ | $20$ | $20$ | $( 1,20, 9,19, 7,22, 2,13, 6,18, 5,14, 8,15,10,12, 4,21,11,16)( 3,17)$ |
| 20A-3 | $20,2$ | $121$ | $20$ | $20$ | $( 1,16,11,21, 4,12,10,15, 8,14, 5,18, 6,13, 2,22, 7,19, 9,20)( 3,17)$ |
| 20A7 | $20,2$ | $121$ | $20$ | $20$ | $( 1,18,11,13, 4,22,10,19, 8,20, 5,16, 6,21, 2,12, 7,15, 9,14)( 3,17)$ |
| 20A-7 | $20,2$ | $121$ | $20$ | $20$ | $( 1,14, 9,15, 7,12, 2,21, 6,16, 5,20, 8,19,10,22, 4,13,11,18)( 3,17)$ |
| 20A9 | $20,2$ | $121$ | $20$ | $20$ | $( 1,19, 2,18, 8,12,11,20, 7,13, 5,15, 4,16, 9,22, 6,14,10,21)( 3,17)$ |
| 20A-9 | $20,2$ | $121$ | $20$ | $20$ | $( 1,21,10,14, 6,22, 9,16, 4,15, 5,13, 7,20,11,12, 8,18, 2,19)( 3,17)$ |
Malle's constant $a(G)$: $1/10$
Character table
| 1A | 2A | 4A1 | 4A-1 | 5A1 | 5A-1 | 5A2 | 5A-2 | 10A1 | 10A-1 | 10A3 | 10A-3 | 11A | 11B | 11C | 11D | 11E | 11F | 20A1 | 20A-1 | 20A3 | 20A-3 | 20A7 | 20A-7 | 20A9 | 20A-9 | ||
| Size | 1 | 121 | 121 | 121 | 121 | 121 | 121 | 121 | 121 | 121 | 121 | 121 | 20 | 20 | 20 | 20 | 20 | 20 | 121 | 121 | 121 | 121 | 121 | 121 | 121 | 121 | |
| 2 P | 1A | 1A | 2A | 2A | 5A2 | 5A-2 | 5A-1 | 5A1 | 5A1 | 5A-1 | 5A-2 | 5A2 | 11A | 11B | 11C | 11D | 11E | 11F | 10A1 | 10A-1 | 10A3 | 10A-3 | 10A-3 | 10A3 | 10A-1 | 10A1 | |
| 5 P | 1A | 2A | 4A1 | 4A-1 | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 11A | 11B | 11C | 11D | 11E | 11F | 4A1 | 4A-1 | 4A-1 | 4A1 | 4A-1 | 4A1 | 4A1 | 4A-1 | |
| 11 P | 1A | 2A | 4A-1 | 4A1 | 5A1 | 5A-1 | 5A2 | 5A-2 | 10A1 | 10A-1 | 10A3 | 10A-3 | 1A | 1A | 1A | 1A | 1A | 1A | 20A-9 | 20A9 | 20A-7 | 20A7 | 20A-3 | 20A3 | 20A-1 | 20A1 | |
| Type | |||||||||||||||||||||||||||
| 2420.b.1a | R | ||||||||||||||||||||||||||
| 2420.b.1b | R | ||||||||||||||||||||||||||
| 2420.b.1c1 | C | ||||||||||||||||||||||||||
| 2420.b.1c2 | C | ||||||||||||||||||||||||||
| 2420.b.1d1 | C | ||||||||||||||||||||||||||
| 2420.b.1d2 | C | ||||||||||||||||||||||||||
| 2420.b.1d3 | C | ||||||||||||||||||||||||||
| 2420.b.1d4 | C | ||||||||||||||||||||||||||
| 2420.b.1e1 | C | ||||||||||||||||||||||||||
| 2420.b.1e2 | C | ||||||||||||||||||||||||||
| 2420.b.1e3 | C | ||||||||||||||||||||||||||
| 2420.b.1e4 | C | ||||||||||||||||||||||||||
| 2420.b.1f1 | C | ||||||||||||||||||||||||||
| 2420.b.1f2 | C | ||||||||||||||||||||||||||
| 2420.b.1f3 | C | ||||||||||||||||||||||||||
| 2420.b.1f4 | C | ||||||||||||||||||||||||||
| 2420.b.1f5 | C | ||||||||||||||||||||||||||
| 2420.b.1f6 | C | ||||||||||||||||||||||||||
| 2420.b.1f7 | C | ||||||||||||||||||||||||||
| 2420.b.1f8 | C | ||||||||||||||||||||||||||
| 2420.b.20a | R | ||||||||||||||||||||||||||
| 2420.b.20b | R | ||||||||||||||||||||||||||
| 2420.b.20c | R | ||||||||||||||||||||||||||
| 2420.b.20d | R | ||||||||||||||||||||||||||
| 2420.b.20e | R | ||||||||||||||||||||||||||
| 2420.b.20f | R |
Regular extensions
Data not computed