Properties

Label 11.1.10.9a1.8
Base \(\Q_{11}\)
Degree \(10\)
e \(10\)
f \(1\)
c \(9\)
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{10} + 88\) Copy content Toggle raw display

Invariants

Base field: $\Q_{11}$
Degree $d$: $10$
Ramification index $e$: $10$
Residue field degree $f$: $1$
Discriminant exponent $c$: $9$
Discriminant root field: $\Q_{11}(\sqrt{11})$
Root number: $-i$
$\Aut(K/\Q_{11})$ $=$$\Gal(K/\Q_{11})$: $C_{10}$
This field is Galois and abelian over $\Q_{11}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$10 = (11 - 1)$

Intermediate fields

$\Q_{11}(\sqrt{11})$, 11.1.5.4a1.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{11}$
Relative Eisenstein polynomial: \( x^{10} + 88 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^9 + 10 z^8 + z^7 + 10 z^6 + z^5 + 10 z^4 + z^3 + 10 z^2 + z + 10$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $10$
Galois group: $C_{10}$ (as 10T1)
Inertia group: $C_{10}$ (as 10T1)
Wild inertia group: $C_1$
Galois unramified degree: $1$
Galois tame degree: $10$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.9$
Galois splitting model:$x^{10} - x^{9} - 153 x^{8} + 450 x^{7} + 3587 x^{6} - 7305 x^{5} - 29655 x^{4} + 9976 x^{3} + 37852 x^{2} - 16512 x - 2672$