Properties

Label 109.3.3.6a1.3
Base \(\Q_{109}\)
Degree \(9\)
e \(3\)
f \(3\)
c \(6\)
Galois group $C_3^2$ (as 9T2)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{3} + x + 103 )^{3} + 109$ Copy content Toggle raw display

Invariants

Base field: $\Q_{109}$
Degree $d$: $9$
Ramification index $e$: $3$
Residue field degree $f$: $3$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{109}$
Root number: $1$
$\Aut(K/\Q_{109})$ $=$$\Gal(K/\Q_{109})$: $C_3^2$
This field is Galois and abelian over $\Q_{109}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$1295028 = (109^{ 3 } - 1)$

Intermediate fields

109.3.1.0a1.1, 109.1.3.2a1.1, 109.1.3.2a1.2, 109.1.3.2a1.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:109.3.1.0a1.1 $\cong \Q_{109}(t)$ where $t$ is a root of \( x^{3} + x + 103 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + 109 \) $\ \in\Q_{109}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 3 z + 3$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $9$
Galois group: $C_3^2$ (as 9T2)
Inertia group: Intransitive group isomorphic to $C_3$
Wild inertia group: $C_1$
Galois unramified degree: $3$
Galois tame degree: $3$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.6666666666666666$
Galois splitting model:not computed