Defining polynomial
$( x^{3} + x + 103 )^{3} + 109$
|
Invariants
Base field: | $\Q_{109}$ |
Degree $d$: | $9$ |
Ramification index $e$: | $3$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $6$ |
Discriminant root field: | $\Q_{109}$ |
Root number: | $1$ |
$\Aut(K/\Q_{109})$ $=$$\Gal(K/\Q_{109})$: | $C_3^2$ |
This field is Galois and abelian over $\Q_{109}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | undefined |
Roots of unity: | $1295028 = (109^{ 3 } - 1)$ |
Intermediate fields
109.3.1.0a1.1, 109.1.3.2a1.1, 109.1.3.2a1.2, 109.1.3.2a1.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 109.3.1.0a1.1 $\cong \Q_{109}(t)$ where $t$ is a root of
\( x^{3} + x + 103 \)
|
Relative Eisenstein polynomial: |
\( x^{3} + 109 \)
$\ \in\Q_{109}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^2 + 3 z + 3$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois degree: | $9$ |
Galois group: | $C_3^2$ (as 9T2) |
Inertia group: | Intransitive group isomorphic to $C_3$ |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $3$ |
Galois tame degree: | $3$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[\ ]$ |
Galois mean slope: | $0.6666666666666666$ |
Galois splitting model: | not computed |