Show commands: Magma
Group invariants
Abstract group: | $C_3^2$ |
| |
Order: | $9=3^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | yes |
| |
Solvable: | yes |
| |
Nilpotency class: | $1$ |
|
Group action invariants
Degree $n$: | $9$ |
| |
Transitive number $t$: | $2$ |
| |
CHM label: | $E(9)=3[x]3$ | ||
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $9$ |
| |
Generators: | $(1,2,9)(3,4,5)(6,7,8)$, $(1,4,7)(2,5,8)(3,6,9)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ x 4 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$ x 4
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{9}$ | $1$ | $1$ | $0$ | $()$ |
3A1 | $3^{3}$ | $1$ | $3$ | $6$ | $(1,2,9)(3,4,5)(6,7,8)$ |
3A-1 | $3^{3}$ | $1$ | $3$ | $6$ | $(1,9,2)(3,5,4)(6,8,7)$ |
3B1 | $3^{3}$ | $1$ | $3$ | $6$ | $(1,4,7)(2,5,8)(3,6,9)$ |
3B-1 | $3^{3}$ | $1$ | $3$ | $6$ | $(1,7,4)(2,8,5)(3,9,6)$ |
3C1 | $3^{3}$ | $1$ | $3$ | $6$ | $(1,5,6)(2,3,7)(4,8,9)$ |
3C-1 | $3^{3}$ | $1$ | $3$ | $6$ | $(1,6,5)(2,7,3)(4,9,8)$ |
3D1 | $3^{3}$ | $1$ | $3$ | $6$ | $(1,3,8)(2,4,6)(5,7,9)$ |
3D-1 | $3^{3}$ | $1$ | $3$ | $6$ | $(1,8,3)(2,6,4)(5,9,7)$ |
Malle's constant $a(G)$: $1/6$
Character table
1A | 3A1 | 3A-1 | 3B1 | 3B-1 | 3C1 | 3C-1 | 3D1 | 3D-1 | ||
Size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
3 P | 1A | 3A-1 | 3A1 | 3B-1 | 3B1 | 3C-1 | 3C1 | 3D-1 | 3D1 | |
Type | ||||||||||
9.2.1a | R | |||||||||
9.2.1b1 | C | |||||||||
9.2.1b2 | C | |||||||||
9.2.1c1 | C | |||||||||
9.2.1c2 | C | |||||||||
9.2.1d1 | C | |||||||||
9.2.1d2 | C | |||||||||
9.2.1e1 | C | |||||||||
9.2.1e2 | C |
Regular extensions
$f_{ 1 } =$ |
$x^{9} + \left(-18 t^{2} - 15\right) x^{7} + 6 t x^{6} + \left(81 t^{4} + 135 t^{2} + 63\right) x^{5} + \left(-72 t^{3} - 60 t\right) x^{4} + \left(-90 t^{4} - 192 t^{2} - 85\right) x^{3} + 54 t x^{2} + \left(9 t^{4} + 75 t^{2} + 36\right) x + 8 t^{3}$
|