Defining polynomial
\(x^{8} + 11663\)
|
Invariants
Base field: | $\Q_{109}$ |
Degree $d$: | $8$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $7$ |
Discriminant root field: | $\Q_{109}(\sqrt{109\cdot 2})$ |
Root number: | $-1$ |
$\Aut(K/\Q_{109})$: | $C_4$ |
This field is not Galois over $\Q_{109}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | undefined |
Roots of unity: | $108 = (109 - 1)$ |
Intermediate fields
$\Q_{109}(\sqrt{109\cdot 2})$, 109.1.4.3a1.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{109}$ |
Relative Eisenstein polynomial: |
\( x^{8} + 11663 \)
|
Ramification polygon
Residual polynomials: | $z^7 + 8 z^6 + 28 z^5 + 56 z^4 + 70 z^3 + 56 z^2 + 28 z + 8$ |
Associated inertia: | $2$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois degree: | $16$ |
Galois group: | $\OD_{16}$ (as 8T7) |
Inertia group: | $C_8$ (as 8T1) |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $8$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[\ ]$ |
Galois mean slope: | $0.875$ |
Galois splitting model: | not computed |