Properties

Label 107.1.6.5a1.2
Base \(\Q_{107}\)
Degree \(6\)
e \(6\)
f \(1\)
c \(5\)
Galois group $D_{6}$ (as 6T3)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{6} + 214\) Copy content Toggle raw display

Invariants

Base field: $\Q_{107}$
Degree $d$: $6$
Ramification index $e$: $6$
Residue field degree $f$: $1$
Discriminant exponent $c$: $5$
Discriminant root field: $\Q_{107}(\sqrt{107})$
Root number: $-i$
$\Aut(K/\Q_{107})$: $C_2$
This field is not Galois over $\Q_{107}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$106 = (107 - 1)$

Intermediate fields

$\Q_{107}(\sqrt{107})$, 107.1.3.2a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{107}$
Relative Eisenstein polynomial: \( x^{6} + 214 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^5 + 6 z^4 + 15 z^3 + 20 z^2 + 15 z + 6$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $12$
Galois group: $D_6$ (as 6T3)
Inertia group: $C_6$ (as 6T1)
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $6$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.8333333333333334$
Galois splitting model:$x^{6} - 107$