The q-expansion of a modular form $f(z)$ is its Fourier expansion at the cusp $z=i\infty$ ($q=0$), expressed as a power series $\sum a_n q^n$ in the variable $q=e^{2\pi iz}$.
For cusp forms the constant coefficient $a_0$ of the $q$-expansion is zero.
Knowl status:
- Review status: reviewed
- Last edited by David Farmer on 2019-04-29 09:28:57
Referred to by:
History:
(expand/hide all)
- cmf.analytic_rank
- cmf.dualform
- cmf.eisenstein
- cmf.embedding
- cmf.hecke_operator
- cmf.hecke_ring_generators
- cmf.lfunction
- cmf.selfdual
- cmf.trace_bound
- rcs.cande.cmf
- lmfdb/classical_modular_forms/templates/cmf_browse.html (line 44)
- lmfdb/classical_modular_forms/templates/cmf_newform_common.html (line 180)
- lmfdb/classical_modular_forms/templates/cmf_newform_common.html (line 224)
- lmfdb/classical_modular_forms/templates/cmf_newform_list.html (line 29)
- 2020-01-03 12:33:03 by John Voight
- 2020-01-03 06:08:09 by Andrew Sutherland
- 2020-01-03 04:36:09 by Andrew Sutherland
- 2019-04-29 09:28:57 by David Farmer (Reviewed)
- 2018-12-07 20:29:35 by Andrew Sutherland (Reviewed)