The character of an elliptic modular form $f$ of weight $k$ for the group $\Gamma$ is the Dirichlet character $\chi$ that appears in its transformation under the action of the defining group $\Gamma$. Namely, \[f(\gamma z) = \chi(d)(cz+d)^k f(z) \] for any $z\in\mathcal{H}$ and $\gamma = \begin{pmatrix} * & * \\ c & d \end{pmatrix}\in\Gamma$. Here $\Gamma$ is a subgroup of $\rm{SL}_2(\mathbb{Z})$ containing the principal congruence subgroup $\Gamma(N)$, and $\chi$ is a character mod $N$.
Knowl status:
- Review status: reviewed
- Last edited by David Farmer on 2019-04-09 22:57:32
Referred to by:
History:
(expand/hide all)
Differences
(show/hide)
- cmf.display_dim
- cmf.embedding
- cmf.embedding_format
- cmf.newspace
- cmf.oldspace
- cmf.satake_parameters
- cmf.sturm_bound
- cmf.subspaces
- mf.maass.mwf.dimension
- rcs.cande.cmf
- rcs.cande.lfunction
- lmfdb/classical_modular_forms/templates/cmf_browse.html (line 64)
- lmfdb/classical_modular_forms/templates/cmf_browse.html (line 134)
- lmfdb/classical_modular_forms/templates/cmf_full_gamma1_space.html (line 143)
- lmfdb/classical_modular_forms/templates/cmf_newform_common.html (line 152)
- lmfdb/classical_modular_forms/templates/cmf_refine_search.html (line 75)
- lmfdb/classical_modular_forms/templates/cmf_space.html (line 28)
- lmfdb/classical_modular_forms/templates/cmf_space_list.html (line 9)
- lmfdb/classical_modular_forms/templates/cmf_space_refine_search.html (line 66)