-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 11025, 'abvar_counts': [11025, 91298025, 829884560400, 7837043008055625, 73745500179776000625, 693840621269524429209600, 6528361138058257351282055025, 61425368045288148579950957855625, 577951262204039966633822076500240400, 5437943427034332009493613941067456675625], 'abvar_counts_str': '11025 91298025 829884560400 7837043008055625 73745500179776000625 693840621269524429209600 6528361138058257351282055025 61425368045288148579950957855625 577951262204039966633822076500240400 5437943427034332009493613941067456675625 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.615645519408588, 0.615645519408588], 'center_dim': 2, 'curve_count': 112, 'curve_counts': [112, 9700, 909286, 88524868, 8587699792, 832969916350, 80798264223376, 7837433938752388, 760231058208646822, 73742412659209838500], 'curve_counts_str': '112 9700 909286 88524868 8587699792 832969916350 80798264223376 7837433938752388 760231058208646822 73742412659209838500 ', 'curves': ['y^2=69*x^6+56*x^5+86*x^4+66*x^3+65*x^2+33*x+2', 'y^2=69*x^6+94*x^5+52*x^4+77*x^3+37*x^2+92*x+77', 'y^2=4*x^6+20*x^5+82*x^4+6*x^3+78*x^2+17*x+25', 'y^2=82*x^6+63*x^5+86*x^4+88*x^3+3*x^2+59*x+38', 'y^2=23*x^6+38*x^5+88*x^4+3*x^3+85*x^2+46*x+15', 'y^2=17*x^6+28*x^5+11*x^4+65*x^3+12*x^2+71*x+76', 'y^2=85*x^6+39*x^5+77*x^4+59*x^3+76*x^2+51*x+85', 'y^2=x^6+67*x^5+5*x^4+10*x^3+87*x^2+46*x+51', 'y^2=x^6+3*x^3+27', 'y^2=89*x^6+43*x^5+60*x^4+10*x^3+57*x^2+73*x+85', 'y^2=92*x^6+50*x^5+86*x^4+34*x^3+75*x^2+6*x+57', 'y^2=86*x^6+50*x^5+25*x^4+61*x^3+93*x^2+54*x+13', 'y^2=79*x^6+59*x^5+68*x^4+8*x^3+70*x^2+34*x+1', 'y^2=77*x^6+37*x^5+59*x^4+9*x^3+18*x^2+90*x+46', 'y^2=91*x^6+34*x^5+77*x^4+33*x^3+34*x^2+42*x+32', 'y^2=83*x^6+15*x^5+82*x^4+85*x^3+26*x^2+58*x+74', 'y^2=x^6+37*x^5+22*x^4+38*x^3+36*x^2+70*x+65', 'y^2=38*x^6+51*x^5+19*x^4+93*x^3+67*x^2+46*x+60', 'y^2=44*x^6+80*x^5+67*x^4+14*x^3+15*x^2+20*x+43', 'y^2=11*x^6+37*x^5+11*x^4+88*x^3+64*x^2+42*x+91', 'y^2=9*x^6+72*x^5+88*x^4+93*x^3+25*x^2+49*x+49', 'y^2=89*x^6+92*x^5+95*x^4+66*x^3+22*x^2+74*x+75', 'y^2=69*x^6+80*x^5+92*x^4+14*x^3+74*x^2+5*x+55', 'y^2=96*x^6+38*x^5+32*x^4+53*x^3+94*x^2+45*x+22', 'y^2=56*x^6+x^5+84*x^4+63*x^3+29*x^2+75*x+92', 'y^2=56*x^6+17*x^5+15*x^4+85*x^3+60*x^2+78*x+92', 'y^2=62*x^6+33*x^5+32*x^4+11*x^3+62*x^2+75*x+25', 'y^2=56*x^6+38*x^5+5*x^4+59*x^3+x^2+7*x+78', 'y^2=4*x^6+25*x^5+26*x^4+23*x^3+48*x^2+32*x+43', 'y^2=2*x^6+91*x^5+62*x^4+29*x^3+54*x^2+15*x+6', 'y^2=37*x^6+90*x^5+68*x^4+94*x^3+10*x^2+34*x+29', 'y^2=55*x^6+16*x^5+10*x^4+38*x^3+89*x^2+35*x+94', 'y^2=60*x^6+15*x^5+61*x^4+84*x^3+50*x^2+87*x+62', 'y^2=79*x^6+8*x^5+75*x^4+25*x^3+61*x^2+11*x+8', 'y^2=52*x^6+80*x^5+65*x^4+65*x^3+50*x^2+68*x+34', 'y^2=90*x^6+38*x^5+56*x^4+84*x^3+56*x^2+38*x+90', 'y^2=48*x^6+65*x^5+87*x^4+54*x^3+58*x^2+72*x+25', 'y^2=48*x^6+61*x^5+60*x^4+14*x^3+76*x^2+39*x+46', 'y^2=90*x^6+44*x^5+9*x^4+40*x^3+40*x^2+3*x+27', 'y^2=81*x^6+57*x^5+87*x^4+94*x^3+92*x^2+77*x+32', 'y^2=95*x^6+65*x^5+30*x^4+84*x^3+10*x^2+10*x+64', 'y^2=33*x^6+42*x^5+16*x^4+6*x^3+33*x^2+90*x+22', 'y^2=44*x^6+12*x^5+49*x^4+82*x^3+62*x^2+18*x+36', 'y^2=39*x^6+89*x^5+43*x^4+34*x^3+24*x^2+8*x+82', 'y^2=6*x^6+69*x^5+57*x^4+74*x^3+4*x^2+38*x+7', 'y^2=x^6+61*x^3+1', 'y^2=x^6+95*x^3+89', 'y^2=25*x^6+21*x^5+x^4+54*x^3+17*x^2+59*x+1', 'y^2=31*x^6+46*x^5+77*x^4+5*x^3+90*x^2+10*x+73', 'y^2=6*x^6+66*x^5+42*x^4+50*x^3+25*x^2+8*x+50', 'y^2=86*x^6+61*x^5+85*x^4+56*x^3+66*x^2+75*x+72', 'y^2=25*x^6+7*x^5+15*x^4+62*x^3+82*x^2+7*x+72', 'y^2=20*x^6+41*x^5+33*x^4+65*x^3+33*x^2+41*x+20', 'y^2=96*x^6+55*x^5+12*x^4+50*x^3+64*x^2+34*x+89', 'y^2=91*x^6+27*x^5+14*x^4+41*x^3+30*x^2+32*x+41', 'y^2=95*x^6+29*x^5+77*x^4+13*x^3+78*x^2+56*x+94', 'y^2=18*x^6+44*x^5+51*x^3+87*x^2+92*x+17', 'y^2=48*x^6+83*x^5+83*x^4+23*x^3+68*x^2+86*x+69', 'y^2=35*x^6+18*x^5+44*x^4+68*x^3+31*x^2+89*x+88', 'y^2=35*x^6+49*x^5+58*x^4+4*x^3+86*x^2+51*x+87', 'y^2=58*x^6+46*x^5+2*x^4+56*x^3+89*x^2+10*x+65', 'y^2=59*x^6+92*x^5+87*x^4+12*x^3+83*x^2+79*x+36', 'y^2=14*x^6+38*x^5+79*x^4+63*x^3+33*x^2+76*x+47', 'y^2=72*x^6+86*x^5+72*x^4+17*x^3+86*x^2+48*x+48', 'y^2=93*x^6+57*x^5+82*x^4+20*x^3+80*x^2+66*x+38', 'y^2=52*x^6+49*x^5+2*x^4+77*x^3+87*x^2+15*x+3', 'y^2=85*x^6+9*x^5+11*x^4+75*x^3+46*x^2+62*x+42', 'y^2=80*x^6+66*x^5+30*x^4+66*x^3+40*x^2+85*x+10', 'y^2=11*x^6+83*x^5+12*x^4+73*x^3+31*x^2+13*x+25', 'y^2=28*x^6+94*x^5+78*x^4+84*x^3+30*x^2+3*x+34', 'y^2=25*x^6+35*x^4+4*x^3+27*x^2+91', 'y^2=79*x^6+76*x^5+42*x^4+44*x^3+80*x^2+67*x+50', 'y^2=3*x^6+7*x^5+73*x^4+63*x^3+76*x^2+85*x+45', 'y^2=32*x^6+92*x^5+47*x^4+73*x^3+67*x^2+88*x+7', 'y^2=75*x^6+62*x^5+8*x^4+12*x^3+74*x^2+55*x+58', 'y^2=26*x^6+29*x^5+60*x^4+78*x^3+25*x^2+86*x+85', 'y^2=33*x^6+36*x^5+40*x^4+67*x^3+83*x^2+31*x+23', 'y^2=54*x^6+28*x^5+60*x^4+76*x^3+76*x^2+5*x+7', 'y^2=6*x^6+8*x^5+37*x^4+38*x^3+42*x^2+66*x+9', 'y^2=8*x^6+78*x^5+45*x^4+21*x^3+82*x^2+22*x+27', 'y^2=84*x^6+87*x^5+60*x^4+70*x^3+34*x^2+69*x+13', 'y^2=40*x^6+71*x^5+93*x^4+63*x^3+96*x^2+61*x+53', 'y^2=34*x^6+48*x^5+39*x^4+17*x^3+44*x^2+50*x+96', 'y^2=61*x^6+26*x^5+70*x^4+67*x^3+61*x^2+57*x+44', 'y^2=15*x^6+65*x^5+40*x^4+71*x^3+17*x^2+28*x+77', 'y^2=28*x^6+41*x^5+68*x^4+69*x^3+84*x^2+18*x+15', 'y^2=4*x^6+66*x^5+74*x^4+58*x^3+68*x^2+49*x+4', 'y^2=61*x^6+51*x^5+83*x^3+75*x^2+46*x+39', 'y^2=15*x^6+7*x^5+51*x^4+34*x^3+81*x^2+27*x+43', 'y^2=39*x^6+56*x^5+63*x^4+37*x^3+75*x^2+87*x+32', 'y^2=37*x^6+59*x^5+54*x^4+28*x^3+9*x^2+69*x+59', 'y^2=62*x^6+72*x^5+3*x^4+32*x^3+21*x^2+82*x+21', 'y^2=62*x^6+67*x^5+52*x^4+4*x^3+39*x^2+68*x+11', 'y^2=37*x^6+9*x^5+86*x^3+52*x^2+6*x+18', 'y^2=95*x^6+6*x^5+76*x^4+9*x^3+82*x^2+41*x+50', 'y^2=49*x^6+38*x^5+24*x^4+11*x^3+31*x^2+57*x+4', 'y^2=68*x^6+79*x^5+24*x^4+42*x^3+47*x^2+31*x+41', 'y^2=12*x^6+27*x^5+93*x^4+10*x^3+32*x^2+79*x+64', 'y^2=33*x^6+90*x^5+11*x^4+4*x^3+56*x^2+3*x+10', 'y^2=4*x^6+x^5+21*x^4+65*x^3+81*x^2+94*x+11', 'y^2=78*x^6+89*x^5+73*x^4+77*x^3+79*x^2+92*x+52', 'y^2=12*x^6+14*x^5+3*x^4+34*x^3+43*x^2+74*x+50'], 'dim1_distinct': 1, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'g': 2, 'galois_groups': ['2T1'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.339.1'], 'geometric_splitting_field': '2.0.339.1', 'geometric_splitting_polynomials': [[85, -1, 1]], 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 102, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': False, 'is_squarefree': False, 'is_supersingular': False, 'jacobian_count': 102, 'label': '2.97.o_jj', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 6, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.339.1'], 'p': 97, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 14, 243, 1358, 9409], 'poly_str': '1 14 243 1358 9409 ', 'primitive_models': [], 'q': 97, 'real_poly': [1, 14, 49], 'simple_distinct': ['1.97.h'], 'simple_factors': ['1.97.hA', '1.97.hB'], 'simple_multiplicities': [2], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '2.0.339.1', 'splitting_polynomials': [[85, -1, 1]], 'twist_count': 6, 'twists': [['2.97.ao_jj', '2.9409.le_cgyl', 2], ['2.97.a_fp', '2.9409.le_cgyl', 2], ['2.97.ah_abw', '2.912673.afai_khdgg', 3], ['2.97.a_afp', '2.88529281.agnu_pidajb', 4], ['2.97.h_abw', '2.832972004929.aeovqa_nffcnzcty', 6]]}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.97.o_jj', 'extension_degree': 1, 'extension_label': '1.97.h', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.339.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.97.h', 'galois_group': '2T1', 'places': [['3', '1'], ['93', '1']]}