-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 5184, 'abvar_counts': [5184, 47775744, 328384010304, 2253554325651456, 15516474082913830464, 106889717399459712270336, 736364726615189165950799424, 5072819930416729534512186261504, 34946658979306309428462802659663936, 240747534273847068047321184173241729024], 'abvar_counts_str': '5184 47775744 328384010304 2253554325651456 15516474082913830464 106889717399459712270336 736364726615189165950799424 5072819930416729534512186261504 34946658979306309428462802659663936 240747534273847068047321184173241729024 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.27115506353094, 0.27115506353094], 'center_dim': 2, 'curve_count': 60, 'curve_counts': [60, 6934, 574308, 47484910, 3939150540, 326939485318, 27136031211636, 2252292068511454, 186940254945582684, 15516041196923450614], 'curve_counts_str': '60 6934 574308 47484910 3939150540 326939485318 27136031211636 2252292068511454 186940254945582684 15516041196923450614 ', 'curves': ['y^2=23*x^6+72*x^5+58*x^4+5*x^3+58*x^2+72*x+23', 'y^2=52*x^6+2*x^5+12*x^4+8*x^3+12*x^2+2*x+52', 'y^2=31*x^6+81*x^5+3*x^4+53*x^3+x^2+9*x+78', 'y^2=39*x^6+3*x^5+44*x^4+6*x^3+44*x^2+3*x+39', 'y^2=6*x^6+69*x^4+69*x^2+6', 'y^2=36*x^6+71*x^5+53*x^4+63*x^3+53*x^2+71*x+36', 'y^2=60*x^6+64*x^5+36*x^4+82*x^3+81*x^2+75*x+35', 'y^2=38*x^6+73*x^5+72*x^4+38*x^3+67*x^2+20*x+63', 'y^2=x^6+23*x^5+62*x^4+31*x^3+2*x^2+61*x+69', 'y^2=18*x^6+18*x^5+27*x^4+8*x^3+64*x^2+54*x+45', 'y^2=2*x^6+79*x^5+36*x^4+9*x^3+68*x^2+80*x+72', 'y^2=15*x^6+38*x^5+18*x^4+x^3+45*x^2+30*x+58', 'y^2=32*x^6+66*x^5+30*x^4+7*x^3+16*x^2+73*x+67', 'y^2=25*x^6+59*x^5+44*x^4+71*x^3+44*x^2+59*x+25', 'y^2=81*x^6+18*x^4+18*x^2+81', 'y^2=21*x^6+69*x^4+69*x^2+21', 'y^2=72*x^6+10*x^5+75*x^4+43*x^3+3*x^2+4*x+39', 'y^2=71*x^6+76*x^4+76*x^2+71', 'y^2=51*x^6+2*x^4+2*x^2+51', 'y^2=49*x^6+55*x^5+43*x^4+35*x^3+20*x^2+76*x+25', 'y^2=7*x^5+69*x^4+35*x^3+69*x^2+7*x', 'y^2=80*x^6+31*x^4+31*x^2+80', 'y^2=53*x^6+57*x^5+10*x^4+37*x^3+77*x^2+67*x+43', 'y^2=x^6+82*x^5+x^4+38*x^3+70*x^2+80*x+44', 'y^2=27*x^6+52*x^5+82*x^4+11*x^3+45*x^2+56*x+77', 'y^2=55*x^6+8*x^5+7*x^4+39*x^3+7*x^2+8*x+55', 'y^2=67*x^6+57*x^5+44*x^4+8*x^3+75*x^2+9*x+67', 'y^2=60*x^6+10*x^5+16*x^4+18*x^3+16*x^2+10*x+60', 'y^2=7*x^6+33*x^5+20*x^4+28*x^3+20*x^2+33*x+7', 'y^2=75*x^6+53*x^5+39*x^4+43*x^3+39*x^2+53*x+75', 'y^2=8*x^5+65*x^4+29*x^3+64*x^2+54*x', 'y^2=55*x^6+50*x^5+70*x^4+76*x^3+70*x^2+50*x+55', 'y^2=55*x^6+12*x^5+36*x^4+34*x^3+33*x^2+28*x+24', 'y^2=60*x^5+59*x^4+39*x^3+16*x^2+82*x', 'y^2=35*x^6+21*x^5+72*x^4+28*x^3+57*x^2+11*x+71', 'y^2=16*x^6+11*x^4+11*x^2+16', 'y^2=74*x^6+13*x^5+4*x^4+18*x^3+4*x^2+13*x+74', 'y^2=13*x^6+9*x^5+19*x^4+35*x^3+19*x^2+9*x+13', 'y^2=67*x^6+10*x^5+16*x^4+76*x^3+16*x^2+10*x+67', 'y^2=51*x^6+60*x^5+35*x^4+25*x^3+81*x^2+13*x+25', 'y^2=74*x^6+51*x^5+18*x^4+82*x^3+55*x^2+65*x+39', 'y^2=37*x^6+66*x^5+51*x^4+59*x^3+78*x^2+53*x+16', 'y^2=15*x^6+76*x^5+28*x^4+35*x^3+65*x^2+6*x+54', 'y^2=60*x^6+30*x^5+8*x^4+7*x^3+56*x^2+59*x+79', 'y^2=2*x^6+29*x^5+8*x^4+73*x^3+14*x^2+11*x+60', 'y^2=20*x^6+28*x^5+20*x^4+28*x^3+20*x^2+28*x+20', 'y^2=72*x^6+71*x^4+71*x^2+72', 'y^2=74*x^6+43*x^5+10*x^4+15*x^3+12*x^2+42*x+13', 'y^2=53*x^6+13*x^5+68*x^4+51*x^3+68*x^2+13*x+53', 'y^2=9*x^6+38*x^5+26*x^4+74*x^3+26*x^2+38*x+9', 'y^2=54*x^6+58*x^5+35*x^4+50*x^3+50*x^2+54*x+80', 'y^2=41*x^5+60*x^4+64*x^3+60*x^2+41*x', 'y^2=37*x^6+41*x^5+x^4+65*x^3+x^2+41*x+37', 'y^2=34*x^6+40*x^5+69*x^4+78*x^3+33*x^2+41*x+80', 'y^2=49*x^6+10*x^5+69*x^4+82*x^3+69*x^2+10*x+49', 'y^2=55*x^6+29*x^5+45*x^4+55*x^3+40*x^2+43*x+17', 'y^2=55*x^6+29*x^5+69*x^4+72*x^3+61*x^2+75*x+15', 'y^2=58*x^6+60*x^5+10*x^4+38*x^3+42*x^2+4*x+7', 'y^2=2*x^6+9*x^5+49*x^4+79*x^3+49*x^2+9*x+2', 'y^2=43*x^6+82*x^5+18*x^4+80*x^3+52*x^2+6*x+57', 'y^2=37*x^6+57*x^5+59*x^4+21*x^3+59*x^2+57*x+37', 'y^2=56*x^6+41*x^5+20*x^4+76*x^3+67*x^2+3*x+53', 'y^2=41*x^6+60*x^5+40*x^4+18*x^3+46*x^2+3*x+57', 'y^2=54*x^6+53*x^5+40*x^4+82*x^3+22*x^2+82*x+42', 'y^2=43*x^6+50*x^5+82*x^4+10*x^3+82*x^2+50*x+43', 'y^2=36*x^6+24*x^5+56*x^4+5*x^3+56*x^2+24*x+36', 'y^2=41*x^6+18*x^5+28*x^4+65*x^3+17*x^2+6*x+33', 'y^2=31*x^6+15*x^5+12*x^4+80*x^3+36*x^2+52*x+7', 'y^2=x^6+14*x^5+54*x^4+81*x^3+14*x^2+8*x+77', 'y^2=74*x^6+65*x^5+34*x^4+37*x^3+82*x^2+3*x+50', 'y^2=44*x^6+60*x^5+75*x^4+60*x^3+75*x^2+60*x+44', 'y^2=29*x^6+23*x^5+19*x^4+17*x^3+19*x^2+23*x+29', 'y^2=53*x^6+72*x^5+51*x^4+44*x^3+51*x^2+72*x+53', 'y^2=44*x^5+74*x^4+2*x^3+22*x^2+59*x', 'y^2=35*x^6+46*x^5+30*x^4+54*x^3+30*x^2+46*x+35', 'y^2=15*x^6+59*x^5+66*x^4+76*x^3+20*x^2+9*x+53', 'y^2=77*x^6+66*x^5+7*x^4+25*x^3+7*x^2+66*x+77', 'y^2=32*x^6+2*x^5+69*x^4+63*x^3+21*x^2+46*x+58', 'y^2=17*x^6+8*x^5+69*x^4+72*x^3+64*x^2+52*x+64', 'y^2=80*x^6+39*x^5+62*x^4+14*x^3+70*x^2+33*x+14', 'y^2=2*x^5+38*x^4+x^3+7*x^2+8*x', 'y^2=75*x^6+61*x^5+11*x^4+49*x^3+21*x^2+33*x+38', 'y^2=80*x^6+25*x^5+25*x^4+51*x^3+25*x^2+25*x+80', 'y^2=50*x^6+73*x^5+x^4+51*x^3+51*x^2+64*x+60', 'y^2=76*x^6+x^5+40*x^4+33*x^3+40*x^2+x+76', 'y^2=70*x^6+31*x^5+14*x^4+2*x^3+14*x^2+31*x+70', 'y^2=28*x^5+72*x^4+72*x^3+79*x^2+38*x', 'y^2=77*x^6+69*x^5+82*x^4+40*x^3+82*x^2+69*x+77', 'y^2=18*x^6+9*x^4+9*x^2+18', 'y^2=66*x^6+19*x^5+47*x^4+3*x^3+17*x^2+4*x+2', 'y^2=33*x^6+2*x^5+74*x^4+74*x^2+2*x+33', 'y^2=36*x^6+3*x^5+70*x^4+30*x^3+63*x^2+68*x+4', 'y^2=78*x^6+39*x^5+75*x^4+40*x^3+75*x^2+39*x+78', 'y^2=21*x^6+80*x^5+67*x^4+19*x^3+67*x^2+80*x+21', 'y^2=8*x^6+65*x^5+41*x^4+72*x^3+30*x^2+23*x+60', 'y^2=74*x^6+20*x^5+33*x^4+27*x^3+33*x^2+20*x+74', 'y^2=67*x^6+5*x^4+5*x^2+67', 'y^2=12*x^6+80*x^4+3*x^3+47*x^2+69', 'y^2=64*x^6+36*x^5+60*x^4+22*x^3+60*x^2+36*x+64', 'y^2=32*x^6+48*x^5+66*x^4+21*x^3+66*x^2+48*x+32', 'y^2=13*x^6+43*x^5+80*x^4+x^3+80*x^2+43*x+13', 'y^2=50*x^6+55*x^5+60*x^4+45*x^3+60*x^2+55*x+50', 'y^2=65*x^6+50*x^4+8*x^3+58*x^2+23', 'y^2=29*x^6+24*x^5+22*x^4+13*x^3+22*x^2+24*x+29', 'y^2=13*x^6+75*x^5+34*x^4+73*x^3+18*x^2+17*x+58'], 'dim1_distinct': 1, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'g': 2, 'galois_groups': ['2T1'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.47.1'], 'geometric_splitting_field': '2.0.47.1', 'geometric_splitting_polynomials': [[12, -1, 1]], 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 105, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': False, 'is_squarefree': False, 'is_supersingular': False, 'jacobian_count': 105, 'label': '2.83.ay_ly', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 6, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.47.1'], 'p': 83, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -24, 310, -1992, 6889], 'poly_str': '1 -24 310 -1992 6889 ', 'primitive_models': [], 'q': 83, 'real_poly': [1, -24, 144], 'simple_distinct': ['1.83.am'], 'simple_factors': ['1.83.amA', '1.83.amB'], 'simple_multiplicities': [2], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '2.0.47.1', 'splitting_polynomials': [[12, -1, 1]], 'twist_count': 6, 'twists': [['2.83.a_w', '2.6889.bs_vco', 2], ['2.83.y_ly', '2.6889.bs_vco', 2], ['2.83.m_cj', '2.571787.dsy_fzkfe', 3], ['2.83.a_aw', '2.47458321.bniq_wwlouo', 4], ['2.83.am_cj', '2.326940373369.abynrw_ebyybkduc', 6]]}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.83.ay_ly', 'extension_degree': 1, 'extension_label': '1.83.am', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.47.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.83.am', 'galois_group': '2T1', 'places': [['38', '1'], ['44', '1']]}