-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 7225, 'abvar_counts': [7225, 40640625, 242044320400, 1516703288765625, 9468951668564130625, 59091444172433124000000, 368789813677141054092387025, 2301619295195867420946462515625, 14364405149912445243773329592995600, 89648251865185392998530722855087890625], 'abvar_counts_str': '7225 40640625 242044320400 1516703288765625 9468951668564130625 59091444172433124000000 368789813677141054092387025 2301619295195867420946462515625 14364405149912445243773329592995600 89648251865185392998530722855087890625 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.590756304636661, 0.590756304636661], 'center_dim': 2, 'curve_count': 90, 'curve_counts': [90, 6508, 490920, 38939668, 3077275950, 243087180478, 19203893016930, 1517108911481188, 119851596736314360, 9468276070833971548], 'curve_counts_str': '90 6508 490920 38939668 3077275950 243087180478 19203893016930 1517108911481188 119851596736314360 9468276070833971548 ', 'curves': ['y^2=46*x^6+58*x^5+23*x^4+39*x^3+23*x^2+58*x+46', 'y^2=59*x^6+32*x^5+30*x^4+63*x^3+56*x^2+26*x+27', 'y^2=4*x^6+71*x^5+35*x^4+40*x^3+39*x^2+31*x+11', 'y^2=61*x^6+63*x^5+11*x^4+6*x^3+3*x^2+56*x+75', 'y^2=65*x^6+30*x^5+21*x^4+74*x^3+76*x^2+41*x+3', 'y^2=4*x^6+15*x^5+77*x^4+59*x^3+77*x^2+15*x+4', 'y^2=70*x^6+43*x^5+57*x^4+4*x^3+14*x^2+21*x+57', 'y^2=71*x^6+23*x^5+73*x^4+59*x^3+73*x^2+23*x+71', 'y^2=23*x^6+74*x^5+x^4+36*x^3+x^2+74*x+23', 'y^2=59*x^6+48*x^5+53*x^4+66*x^3+53*x^2+48*x+59', 'y^2=10*x^6+52*x^5+19*x^4+20*x^3+25*x^2+49*x+40', 'y^2=76*x^6+66*x^5+64*x^4+3*x^3+61*x^2+68*x+22', 'y^2=10*x^6+59*x^5+55*x^4+55*x^3+55*x^2+59*x+10', 'y^2=46*x^6+22*x^5+8*x^4+10*x^3+50*x^2+63*x+40', 'y^2=20*x^6+34*x^5+68*x^4+53*x^3+38*x^2+21*x+54', 'y^2=58*x^6+5*x^5+52*x^4+29*x^3+53*x^2+73*x+47', 'y^2=38*x^6+x^5+34*x^4+30*x^3+69*x^2+6*x+36', 'y^2=8*x^6+51*x^5+44*x^4+26*x^3+69*x^2+6*x+9', 'y^2=35*x^6+37*x^5+48*x^4+66*x^3+48*x^2+37*x+35', 'y^2=63*x^6+37*x^5+60*x^4+36*x^3+33*x^2+55*x+44', 'y^2=30*x^6+53*x^5+37*x^4+27*x^3+48*x^2+66*x+35', 'y^2=19*x^6+40*x^5+76*x^4+28*x^3+20*x^2+77*x+73', 'y^2=25*x^6+9*x^5+41*x^4+42*x^3+41*x^2+9*x+25', 'y^2=25*x^6+34*x^5+2*x^4+34*x^3+40*x^2+31*x+29', 'y^2=21*x^6+69*x^5+51*x^4+52*x^3+51*x^2+69*x+21', 'y^2=8*x^6+46*x^5+15*x^4+15*x^3+7*x^2+46*x+52', 'y^2=77*x^6+29*x^5+27*x^4+23*x^3+50*x^2+61*x+74', 'y^2=66*x^6+65*x^5+17*x^4+61*x^3+21*x^2+66*x+38', 'y^2=30*x^6+48*x^5+38*x^4+23*x^3+70*x^2+74*x+15', 'y^2=52*x^6+7*x^5+x^4+72*x^3+x^2+7*x+52', 'y^2=57*x^6+7*x^5+64*x^4+59*x^3+64*x^2+7*x+57', 'y^2=35*x^6+75*x^5+43*x^4+2*x^3+43*x^2+75*x+35', 'y^2=18*x^6+8*x^5+48*x^4+69*x^3+76*x^2+25*x+16', 'y^2=3*x^6+48*x^3+43', 'y^2=49*x^6+69*x^5+48*x^4+64*x^3+48*x^2+69*x+49', 'y^2=50*x^6+30*x^5+45*x^4+24*x^3+33*x^2+9*x+36', 'y^2=60*x^6+8*x^5+24*x^4+68*x^3+24*x^2+8*x+60', 'y^2=55*x^6+72*x^5+23*x^4+49*x^3+67*x^2+3*x+49', 'y^2=11*x^6+67*x^5+3*x^4+44*x^3+3*x^2+67*x+11', 'y^2=3*x^6+27*x^3+54', 'y^2=17*x^6+35*x^5+36*x^4+78*x^3+74*x^2+59*x+38', 'y^2=78*x^6+43*x^5+8*x^4+60*x^3+50*x^2+47*x+46', 'y^2=26*x^6+76*x^5+50*x^4+29*x^3+20*x^2+11*x+5', 'y^2=10*x^6+66*x^5+47*x^4+16*x^3+12*x^2+29*x+7', 'y^2=5*x^6+68*x^5+4*x^4+25*x^3+4*x^2+68*x+5', 'y^2=77*x^6+63*x^5+27*x^4+35*x^3+10*x^2+4*x+73', 'y^2=67*x^6+26*x^5+63*x^4+27*x^3+49*x^2+4*x+46', 'y^2=49*x^6+11*x^5+16*x^4+37*x^3+16*x^2+67*x+61', 'y^2=24*x^6+29*x^5+43*x^4+44*x^3+32*x^2+13*x+47', 'y^2=19*x^6+47*x^5+33*x^4+21*x^3+76*x^2+42*x+18', 'y^2=57*x^6+8*x^5+66*x^4+68*x^3+66*x^2+8*x+57', 'y^2=32*x^6+33*x^5+47*x^4+43*x^3+47*x^2+33*x+32', 'y^2=23*x^6+22*x^5+65*x^4+43*x^3+23*x^2+24*x+38', 'y^2=71*x^6+59*x^5+48*x^4+69*x^3+48*x^2+59*x+71', 'y^2=12*x^6+30*x^5+2*x^4+59*x^3+2*x^2+30*x+12', 'y^2=25*x^6+23*x^5+3*x^4+70*x^3+58*x^2+55*x+38'], 'dim1_distinct': 1, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'g': 2, 'galois_groups': ['2T1'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.291.1'], 'geometric_splitting_field': '2.0.291.1', 'geometric_splitting_polynomials': [[73, -1, 1]], 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 56, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': False, 'is_squarefree': False, 'is_supersingular': False, 'jacobian_count': 56, 'label': '2.79.k_hb', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 6, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.291.1'], 'p': 79, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 10, 183, 790, 6241], 'poly_str': '1 10 183 790 6241 ', 'primitive_models': [], 'q': 79, 'real_poly': [1, 10, 25], 'simple_distinct': ['1.79.f'], 'simple_factors': ['1.79.fA', '1.79.fB'], 'simple_multiplicities': [2], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '2.0.291.1', 'splitting_polynomials': [[73, -1, 1]], 'twist_count': 6, 'twists': [['2.79.ak_hb', '2.6241.kg_bsql', 2], ['2.79.a_fd', '2.6241.kg_bsql', 2], ['2.79.af_acc', '2.493039.addo_eqavm', 3], ['2.79.a_afd', '2.38950081.apko_ivuurz', 4], ['2.79.f_acc', '2.243087455521.apqwq_ckxavshgo', 6]]}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.79.k_hb', 'extension_degree': 1, 'extension_label': '1.79.f', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.291.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.79.f', 'galois_group': '2T1', 'places': [['2', '1'], ['76', '1']]}