- 
              av_fq_isog •   Show schema
  Hide schema
   
        
{'abvar_count': 5184, 'abvar_counts': [5184, 40144896, 244455091776, 1517392925097984, 9467782732292917824, 59091059192757595508736, 368790078032827746289510464, 2301619337127339541828771774464, 14364405204335894079890966940158016, 89648251971677790649106195924088754176], 'abvar_counts_str': '5184 40144896 244455091776 1517392925097984 9467782732292917824 59091059192757595508736 368790078032827746289510464 2301619337127339541828771774464 14364405204335894079890966940158016 89648251971677790649106195924088754176 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.351411445414278, 0.351411445414278], 'center_dim': 2, 'curve_count': 64, 'curve_counts': [64, 6430, 495808, 38957374, 3076896064, 243085596766, 19203906782656, 1517108939120254, 119851597190404672, 9468276082081256350], 'curve_counts_str': '64 6430 495808 38957374 3076896064 243085596766 19203906782656 1517108939120254 119851597190404672 9468276082081256350 ', 'curves': ['y^2=51*x^6+39*x^5+10*x^4+36*x^2+3*x+36', 'y^2=10*x^6+77*x^5+31*x^4+31*x^3+31*x^2+77*x+10', 'y^2=32*x^6+23*x^5+57*x^4+73*x^3+35*x^2+13*x+19', 'y^2=x^6+x^3+22', 'y^2=74*x^6+74*x^5+16*x^4+12*x^3+16*x^2+74*x+74', 'y^2=26*x^6+32*x^5+67*x^4+57*x^3+67*x^2+32*x+26', 'y^2=7*x^6+55*x^5+74*x^4+15*x^3+74*x^2+55*x+7', 'y^2=50*x^6+4*x^5+59*x^4+29*x^3+57*x^2+8*x+31', 'y^2=x^6+31*x^5+4*x^4+74*x^3+8*x^2+45*x+8', 'y^2=74*x^6+73*x^5+37*x^4+55*x^3+7*x^2+13*x+75', 'y^2=2*x^6+49*x^5+26*x^4+18*x^3+26*x^2+49*x+2', 'y^2=34*x^6+58*x^5+27*x^4+54*x^3+24*x^2+35*x+36', 'y^2=15*x^6+14*x^4+35*x^3+14*x^2+15', 'y^2=74*x^6+20*x^5+68*x^4+45*x^3+15*x^2+62*x+75', 'y^2=23*x^5+76*x^4+22*x^3+30*x^2+72*x+14', 'y^2=77*x^6+14*x^5+63*x^4+16*x^3+2*x^2+53*x+29', 'y^2=67*x^6+70*x^5+19*x^4+17*x^3+46*x^2+57*x+38', 'y^2=44*x^6+50*x^5+31*x^4+3*x^3+31*x^2+50*x+44', 'y^2=15*x^6+14*x^5+64*x^4+74*x^3+73*x^2+37*x+61', 'y^2=24*x^6+17*x^5+41*x^4+61*x^3+48*x^2+28*x+66', 'y^2=47*x^6+56*x^5+60*x^4+4*x^3+60*x^2+56*x+47', 'y^2=48*x^6+69*x^5+12*x^4+77*x^3+12*x^2+69*x+48', 'y^2=60*x^6+34*x^5+7*x^4+47*x^3+7*x^2+34*x+60', 'y^2=9*x^6+58*x^5+11*x^4+28*x^3+11*x^2+58*x+9', 'y^2=14*x^6+5*x^5+72*x^4+62*x^3+72*x^2+5*x+14', 'y^2=35*x^6+72*x^5+33*x^4+68*x^3+33*x^2+72*x+35', 'y^2=11*x^6+27*x^5+48*x^4+41*x^3+37*x^2+54*x+40', 'y^2=59*x^6+10*x^5+29*x^4+28*x^3+29*x^2+10*x+59', 'y^2=x^6+11*x^3+67', 'y^2=6*x^6+10*x^5+73*x^4+18*x^3+55*x^2+2*x+68', 'y^2=x^6+49*x^3+18', 'y^2=46*x^6+15*x^4+15*x^2+46', 'y^2=42*x^6+78*x^4+47*x^3+78*x^2+42', 'y^2=18*x^6+38*x^5+25*x^4+46*x^3+25*x^2+38*x+18', 'y^2=15*x^6+28*x^4+28*x^2+15', 'y^2=48*x^6+22*x^5+38*x^4+78*x^3+38*x^2+22*x+48', 'y^2=38*x^6+42*x^5+67*x^4+2*x^3+67*x^2+42*x+38', 'y^2=38*x^6+44*x^5+45*x^4+3*x^3+45*x^2+44*x+38', 'y^2=39*x^6+56*x^5+42*x^4+48*x^3+2*x^2+31*x+5', 'y^2=x^6+36*x^3+46', 'y^2=34*x^6+14*x^5+71*x^4+43*x^3+71*x^2+14*x+34', 'y^2=13*x^6+38*x^5+14*x^4+78*x^3+48*x^2+13*x+20', 'y^2=11*x^6+18*x^5+46*x^4+54*x^3+40*x^2+16*x+73', 'y^2=60*x^6+11*x^5+70*x^4+15*x^3+15*x^2+60*x+8', 'y^2=24*x^6+65*x^5+65*x^4+43*x^3+53*x^2+37*x+3', 'y^2=4*x^6+18*x^5+35*x^4+67*x^3+28*x^2+71*x+24', 'y^2=59*x^6+60*x^5+4*x^4+11*x^3+4*x^2+60*x+59', 'y^2=66*x^6+69*x^5+5*x^4+34*x^3+5*x^2+69*x+66', 'y^2=x^6+13*x^3+64', 'y^2=53*x^6+57*x^5+56*x^4+8*x^3+28*x^2+34*x+56', 'y^2=59*x^6+50*x^5+60*x^4+24*x^3+77*x^2+22*x+34', 'y^2=70*x^6+61*x^5+41*x^4+66*x^3+20*x^2+43*x+39', 'y^2=3*x^6+47*x^5+64*x^4+73*x^3+20*x^2+63*x+26', 'y^2=10*x^6+77*x^5+47*x^4+12*x^3+12*x^2+17*x+22', 'y^2=x^6+32*x^3+62', 'y^2=30*x^6+59*x^5+77*x^4+73*x^3+76*x^2+35*x+45', 'y^2=73*x^6+65*x^5+16*x^4+61*x^3+26*x^2+5*x+19', 'y^2=44*x^6+32*x^5+77*x^4+74*x^3+77*x^2+32*x+44', 'y^2=6*x^6+75*x^5+18*x^4+x^3+41*x^2+51', 'y^2=76*x^6+62*x^5+7*x^4+50*x^3+35*x^2+49*x+20', 'y^2=27*x^6+53*x^5+35*x^4+4*x^2+60*x+39', 'y^2=47*x^6+47*x^5+22*x^4+49*x^3+22*x^2+47*x+47', 'y^2=12*x^6+76*x^5+40*x^4+19*x^3+42*x^2+4*x+78', 'y^2=14*x^6+37*x^5+66*x^4+65*x^3+7*x^2+14*x+41', 'y^2=6*x^6+64*x^5+39*x^4+7*x^3+38*x^2+43*x+63', 'y^2=56*x^6+33*x^5+61*x^4+35*x^3+61*x^2+33*x+56', 'y^2=56*x^6+42*x^5+12*x^4+60*x^3+18*x^2+14*x+9', 'y^2=48*x^6+38*x^5+49*x^4+47*x^3+49*x^2+38*x+48', 'y^2=44*x^6+30*x^5+54*x^4+78*x^3+65*x^2+20*x+30', 'y^2=58*x^5+18*x^4+67*x^3+23*x^2+63*x', 'y^2=74*x^6+x^5+76*x^4+77*x^3+62*x^2+76*x+6', 'y^2=78*x^6+78*x^5+15*x^4+28*x^3+56*x^2+77*x+61', 'y^2=69*x^6+50*x^5+75*x^4+3*x^3+75*x^2+50*x+69', 'y^2=74*x^6+49*x^4+49*x^2+74', 'y^2=30*x^6+42*x^5+45*x^4+75*x^3+32*x^2+18*x+70', 'y^2=33*x^6+56*x^5+18*x^4+57*x^3+18*x^2+56*x+33', 'y^2=53*x^6+59*x^4+59*x^2+53', 'y^2=5*x^6+45*x^5+51*x^4+9*x^3+72*x^2+67*x+26', 'y^2=52*x^6+54*x^5+33*x^4+47*x^2+23*x+24', 'y^2=60*x^6+40*x^4+40*x^2+60', 'y^2=41*x^6+31*x^5+21*x^4+73*x^3+26*x^2+64*x+69', 'y^2=30*x^6+74*x^5+56*x^4+38*x^3+19*x^2+28*x+74', 'y^2=58*x^6+76*x^5+68*x^4+51*x^3+30*x^2+40*x+9', 'y^2=28*x^6+45*x^5+40*x^4+29*x^3+40*x^2+45*x+28', 'y^2=62*x^6+55*x^5+71*x^4+22*x^3+71*x^2+55*x+62', 'y^2=40*x^6+47*x^5+77*x^4+8*x^3+77*x^2+47*x+40', 'y^2=15*x^6+63*x^5+69*x^4+47*x^3+69*x^2+63*x+15', 'y^2=44*x^6+12*x^5+8*x^4+67*x^3+8*x^2+12*x+44', 'y^2=21*x^6+47*x^5+50*x^4+29*x^3+44*x^2+57*x+21', 'y^2=41*x^5+30*x^4+44*x^3+30*x^2+41*x', 'y^2=x^6+73*x^3+21', 'y^2=34*x^6+34*x^5+6*x^4+69*x^3+43*x^2+39*x+3', 'y^2=61*x^6+55*x^5+29*x^4+35*x^3+29*x^2+55*x+61', 'y^2=71*x^6+50*x^5+47*x^4+63*x^3+69*x^2+45*x+57', 'y^2=43*x^6+11*x^5+44*x^4+71*x^3+44*x^2+11*x+43', 'y^2=21*x^6+56*x^5+21*x^4+28*x^3+36*x^2+63*x+1', 'y^2=67*x^6+73*x^5+5*x^4+70*x^3+5*x^2+73*x+67', 'y^2=57*x^6+45*x^5+29*x^4+55*x^3+29*x^2+45*x+57', 'y^2=27*x^6+x^5+55*x^4+26*x^3+55*x^2+x+27', 'y^2=40*x^6+78*x^5+31*x^4+76*x^3+6*x^2+62*x+7', 'y^2=27*x^6+67*x^5+75*x^4+26*x^3+52*x^2+3*x+77', 'y^2=17*x^6+10*x^5+24*x^4+77*x^3+30*x^2+41*x+57', 'y^2=44*x^6+40*x^5+3*x^4+22*x^3+50*x^2+48*x+23', 'y^2=71*x^6+70*x^5+17*x^4+60*x^3+33*x^2+33*x+17', 'y^2=62*x^6+67*x^5+65*x^4+52*x^3+65*x^2+67*x+62', 'y^2=57*x^6+55*x^4+55*x^2+57', 'y^2=63*x^6+25*x^4+25*x^2+63', 'y^2=48*x^6+77*x^5+34*x^4+64*x^3+34*x^2+77*x+48', 'y^2=69*x^6+78*x^5+50*x^4+3*x^3+51*x^2+28*x+17', 'y^2=37*x^6+69*x^5+35*x^4+63*x^3+48*x^2+56*x+35', 'y^2=63*x^6+78*x^5+22*x^4+45*x^3+22*x^2+78*x+63', 'y^2=x^6+31*x^3+8', 'y^2=27*x^6+31*x^4+31*x^2+27', 'y^2=45*x^6+20*x^4+20*x^2+45', 'y^2=69*x^6+72*x^5+44*x^4+x^3+31*x^2+55*x+61', 'y^2=7*x^5+8*x^4+17*x^3+8*x^2+7*x', 'y^2=68*x^6+55*x^5+9*x^4+22*x^3+10*x^2+64*x+56', 'y^2=71*x^6+26*x^5+75*x^4+53*x^3+75*x^2+26*x+71', 'y^2=13*x^6+13*x^5+7*x^4+35*x^3+76*x^2+28*x+73', 'y^2=77*x^6+2*x^5+58*x^4+74*x^3+58*x^2+2*x+77', 'y^2=23*x^6+51*x^4+51*x^2+23', 'y^2=29*x^6+57*x^5+47*x^4+6*x^3+8*x^2+45*x+33', 'y^2=58*x^6+10*x^5+39*x^4+78*x^3+66*x^2+50*x+32'], 'dim1_distinct': 1, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'g': 2, 'galois_groups': ['2T1'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.7.1'], 'geometric_splitting_field': '2.0.7.1', 'geometric_splitting_polynomials': [[2, -1, 1]], 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 123, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': False, 'is_squarefree': False, 'is_supersingular': False, 'jacobian_count': 123, 'label': '2.79.aq_io', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 6, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.7.1'], 'p': 79, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -16, 222, -1264, 6241], 'poly_str': '1 -16 222 -1264 6241 ', 'primitive_models': [], 'q': 79, 'real_poly': [1, -16, 64], 'simple_distinct': ['1.79.ai'], 'simple_factors': ['1.79.aiA', '1.79.aiB'], 'simple_multiplicities': [2], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '2.0.7.1', 'splitting_polynomials': [[2, -1, 1]], 'twist_count': 6, 'twists': [['2.79.a_dq', '2.6241.hg_bfny', 2], ['2.79.q_io', '2.6241.hg_bfny', 2], ['2.79.i_ap', '2.493039.ecm_gjcfm', 3], ['2.79.a_adq', '2.38950081.kum_hronpm', 4], ['2.79.ai_ap', '2.243087455521.aebtqq_gmbwirlko', 6]]}
           
      - 
              av_fq_endalg_factors •   Show schema
  Hide schema
   
        
{'base_label': '2.79.aq_io', 'extension_degree': 1, 'extension_label': '1.79.ai', 'multiplicity': 2}
           
      - 
              av_fq_endalg_data •   Show schema
  Hide schema
   
        
{'brauer_invariants': ['0', '0'], 'center': '2.0.7.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.79.ai', 'galois_group': '2T1', 'places': [['12', '1'], ['66', '1']]}