-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 6084, 'abvar_counts': [6084, 40908816, 243548172036, 1516233883567104, 9467911264180305924, 59091884863336519109136, 368790359288476861025827524, 2301618994535525409692073345024, 14364404918617598964401217745716036, 89648252026831496793600590866623234576], 'abvar_counts_str': '6084 40908816 243548172036 1516233883567104 9467911264180305924 59091884863336519109136 368790359288476861025827524 2301618994535525409692073345024 14364404918617598964401217745716036 89648252026831496793600590866623234576 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.464111352053011, 0.464111352053011], 'center_dim': 2, 'curve_count': 76, 'curve_counts': [76, 6550, 493972, 38927614, 3076937836, 243088993366, 19203921428404, 1517108713301374, 119851594806470668, 9468276087906361750], 'curve_counts_str': '76 6550 493972 38927614 3076937836 243088993366 19203921428404 1517108713301374 119851594806470668 9468276087906361750 ', 'curves': ['y^2=20*x^6+18*x^5+60*x^4+50*x^3+37*x^2+63*x+19', 'y^2=59*x^6+77*x^5+33*x^4+69*x^3+39*x^2+27*x+39', 'y^2=x^6+42*x^3+65', 'y^2=54*x^6+9*x^5+18*x^4+34*x^3+40*x^2+72*x+56', 'y^2=42*x^6+47*x^5+40*x^4+42*x^3+14*x^2+40*x+46', 'y^2=19*x^6+16*x^5+53*x^4+39*x^3+46*x^2+3*x+61', 'y^2=72*x^6+27*x^5+33*x^4+23*x^3+5*x^2+38*x+21', 'y^2=77*x^6+64*x^5+58*x^4+39*x^3+57*x^2+39*x+4', 'y^2=35*x^6+22*x^5+74*x^4+3*x^3+53*x^2+20*x+33', 'y^2=70*x^6+29*x^5+55*x^4+25*x^3+55*x^2+29*x+70', 'y^2=19*x^6+7*x^5+63*x^4+10*x^3+28*x^2+56*x+50', 'y^2=58*x^6+68*x^5+44*x^4+71*x^3+67*x^2+15*x+36', 'y^2=30*x^6+26*x^5+77*x^4+26*x^3+60*x^2+57*x+36', 'y^2=18*x^6+59*x^5+12*x^4+7*x^3+57*x^2+61*x+53', 'y^2=16*x^6+48*x^5+44*x^4+26*x^3+18*x^2+37*x+73', 'y^2=x^6+x^3+46', 'y^2=53*x^6+54*x^5+73*x^4+15*x^3+55*x^2+74*x+74', 'y^2=71*x^6+14*x^5+36*x^4+28*x^3+55*x^2+63*x+27', 'y^2=61*x^6+3*x^5+24*x^4+50*x^3+3*x^2+66', 'y^2=2*x^6+67*x^5+28*x^4+61*x^3+7*x+42', 'y^2=49*x^6+40*x^5+62*x^4+41*x^3+29*x^2+37*x+53', 'y^2=43*x^6+47*x^5+33*x^4+50*x^3+13*x^2+50*x+43', 'y^2=16*x^6+66*x^5+14*x^4+34*x^3+14*x^2+66*x+16', 'y^2=32*x^6+35*x^5+53*x^4+x^3+74*x^2+57*x+17', 'y^2=62*x^6+52*x^5+74*x^3+13*x^2+38*x+77', 'y^2=71*x^6+27*x^5+63*x^4+63*x^3+3*x^2+15*x+28', 'y^2=51*x^6+65*x^5+22*x^4+70*x^3+22*x^2+65*x+51', 'y^2=48*x^6+70*x^5+11*x^4+49*x^3+11*x^2+70*x+48', 'y^2=42*x^6+4*x^5+6*x^4+23*x^3+x^2+41*x+53', 'y^2=49*x^6+23*x^5+61*x^4+74*x^3+53*x^2+8*x+25', 'y^2=45*x^6+57*x^5+56*x^4+41*x^3+75*x^2+40*x+56', 'y^2=13*x^6+19*x^5+19*x^4+19*x^3+69*x^2+19*x+54', 'y^2=3*x^6+20*x^5+74*x^4+5*x^3+5*x^2+77*x+39', 'y^2=7*x^6+x^5+46*x^4+71*x^3+19*x^2+47*x+12', 'y^2=75*x^6+26*x^5+34*x^4+68*x^3+26*x^2+78*x+24', 'y^2=47*x^6+57*x^5+63*x^4+22*x^3+32*x^2+41*x+68', 'y^2=3*x^6+51*x^5+28*x^4+78*x^3+64*x^2+50*x+43', 'y^2=18*x^6+56*x^5+49*x^4+7*x^3+11*x^2+56*x+17', 'y^2=5*x^6+24*x^5+35*x^4+15*x^3+35*x^2+24*x+5', 'y^2=60*x^6+53*x^5+48*x^4+59*x^3+46*x^2+70*x+54', 'y^2=67*x^6+25*x^5+61*x^4+6*x^3+66*x^2+47*x+12', 'y^2=4*x^6+16*x^5+41*x^4+2*x^2+71*x+5', 'y^2=x^6+13*x^5+54*x^4+72*x^3+30*x^2+19*x+28', 'y^2=25*x^6+6*x^5+26*x^4+58*x^3+30*x^2+12*x+6', 'y^2=20*x^6+62*x^5+32*x^4+56*x^3+42*x^2+20*x+73', 'y^2=64*x^6+23*x^5+25*x^4+59*x^3+x^2+8*x+52', 'y^2=x^6+33*x^5+26*x^4+15*x^3+26*x^2+33*x+1', 'y^2=63*x^6+51*x^5+25*x^4+34*x^3+27*x^2+41*x+24', 'y^2=29*x^6+12*x^5+2*x^4+25*x^2+22*x+25', 'y^2=12*x^6+68*x^5+23*x^4+28*x^3+70*x^2+58*x+19', 'y^2=76*x^6+46*x^5+13*x^4+64*x^3+17*x^2+27*x+35', 'y^2=38*x^6+71*x^4+71*x^2+38', 'y^2=66*x^6+5*x^5+37*x^4+48*x^2+41*x+43', 'y^2=56*x^6+44*x^4+44*x^2+56', 'y^2=68*x^6+40*x^5+26*x^4+25*x^3+19*x^2+46*x+29', 'y^2=56*x^6+36*x^5+16*x^4+4*x^3+5*x^2+12*x+6'], 'dim1_distinct': 1, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'g': 2, 'galois_groups': ['2T1'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.312.1'], 'geometric_splitting_field': '2.0.312.1', 'geometric_splitting_polynomials': [[78, 0, 1]], 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 56, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': False, 'is_squarefree': False, 'is_supersingular': False, 'jacobian_count': 56, 'label': '2.79.ae_gg', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 6, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.312.1'], 'p': 79, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -4, 162, -316, 6241], 'poly_str': '1 -4 162 -316 6241 ', 'primitive_models': [], 'q': 79, 'real_poly': [1, -4, 4], 'simple_distinct': ['1.79.ac'], 'simple_factors': ['1.79.acA', '1.79.acB'], 'simple_multiplicities': [2], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '2.0.312.1', 'splitting_polynomials': [[78, 0, 1]], 'twist_count': 6, 'twists': [['2.79.a_fy', '2.6241.lw_cbog', 2], ['2.79.e_gg', '2.6241.lw_cbog', 2], ['2.79.c_acx', '2.493039.bjw_cqlyg', 3], ['2.79.a_afy', '2.38950081.abhge_reqpkg', 4], ['2.79.ac_acx', '2.243087455521.djmxw_fedtbyzog', 6]]}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.79.ae_gg', 'extension_degree': 1, 'extension_label': '1.79.ac', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.312.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.79.ac', 'galois_group': '2T1', 'places': [['78', '1'], ['1', '1']]}