- 
              av_fq_isog •   Show schema
  Hide schema
   
        {'abvar_count': 6400, 'abvar_counts': [6400, 40960000, 243088441600, 1516136693760000, 9468276088780960000, 59091990439516610560000, 368790120348716799071545600, 2301618904730066815769640960000, 14364405059580771821979562799622400, 89648252093381273531978858521600000000], 'abvar_counts_str': '6400 40960000 243088441600 1516136693760000 9468276088780960000 59091990439516610560000 368790120348716799071545600 2301618904730066815769640960000 14364405059580771821979562799622400 89648252093381273531978858521600000000 ', 'angle_corank': 2, 'angle_rank': 0, 'angles': [0.5, 0.5], 'center_dim': 2, 'curve_count': 80, 'curve_counts': [80, 6558, 493040, 38925118, 3077056400, 243089427678, 19203908986160, 1517108654106238, 119851595982618320, 9468276094935072798], 'curve_counts_str': '80 6558 493040 38925118 3077056400 243089427678 19203908986160 1517108654106238 119851595982618320 9468276094935072798 ', 'curves': ['y^2=x^5+78', 'y^2=3*x^5+76', 'y^2=16*x^6+x^5+16*x^4+9*x^3+62*x^2+53*x+10', 'y^2=48*x^6+3*x^5+48*x^4+27*x^3+28*x^2+x+30', 'y^2=67*x^6+50*x^5+23*x^4+78*x^3+37*x^2+3*x+33', 'y^2=43*x^6+71*x^5+69*x^4+76*x^3+32*x^2+9*x+20', 'y^2=66*x^6+72*x^5+7*x^4+22*x^3+48*x^2+50*x+60', 'y^2=40*x^6+58*x^5+21*x^4+66*x^3+65*x^2+71*x+22', 'y^2=76*x^6+60*x^5+44*x^4+73*x^3+74*x^2+55*x+34', 'y^2=70*x^6+22*x^5+53*x^4+61*x^3+64*x^2+7*x+23', 'y^2=58*x^6+11*x^5+21*x^3+9*x+57', 'y^2=16*x^6+33*x^5+63*x^3+27*x+13', 'y^2=40*x^6+47*x^5+39*x^4+7*x^3+39*x^2+47*x+40', 'y^2=41*x^6+62*x^5+38*x^4+21*x^3+38*x^2+62*x+41', 'y^2=29*x^6+39*x^5+31*x^4+7*x^3+12*x^2+32*x+37', 'y^2=8*x^6+38*x^5+14*x^4+21*x^3+36*x^2+17*x+32', 'y^2=12*x^6+28*x^5+5*x^4+29*x^3+2*x^2+74*x+33', 'y^2=36*x^6+5*x^5+15*x^4+8*x^3+6*x^2+64*x+20', 'y^2=59*x^6+23*x^5+70*x^4+13*x^3+70*x^2+23*x+59', 'y^2=19*x^6+69*x^5+52*x^4+39*x^3+52*x^2+69*x+19', 'y^2=47*x^6+8*x^5+41*x^4+32*x^3+56*x^2+20*x+68', 'y^2=62*x^6+24*x^5+44*x^4+17*x^3+10*x^2+60*x+46', 'y^2=15*x^6+59*x^5+17*x^4+43*x^3+17*x^2+59*x+15', 'y^2=45*x^6+19*x^5+51*x^4+50*x^3+51*x^2+19*x+45', 'y^2=9*x^6+42*x^4+42*x^2+9', 'y^2=27*x^6+47*x^4+47*x^2+27', 'y^2=9*x^6+47*x^4+62*x^2+6', 'y^2=72*x^6+50*x^4+71*x^2+48', 'y^2=27*x^6+29*x^5+69*x^4+42*x^3+63*x^2+30*x+12', 'y^2=2*x^6+8*x^5+49*x^4+47*x^3+31*x^2+11*x+36', 'y^2=32*x^6+39*x^5+70*x^4+55*x^3+70*x^2+39*x+32', 'y^2=17*x^6+38*x^5+52*x^4+7*x^3+52*x^2+38*x+17', 'y^2=24*x^6+x^5+77*x^4+20*x^3+37*x^2+57*x+19', 'y^2=72*x^6+3*x^5+73*x^4+60*x^3+32*x^2+13*x+57', 'y^2=4*x^5+68*x^4+27*x^3+24*x^2+21*x', 'y^2=12*x^5+46*x^4+2*x^3+72*x^2+63*x', 'y^2=62*x^6+68*x^5+9*x^4+24*x^3+9*x^2+68*x+62', 'y^2=28*x^6+46*x^5+27*x^4+72*x^3+27*x^2+46*x+28', 'y^2=33*x^6+30*x^5+32*x^4+75*x^3+16*x^2+15', 'y^2=20*x^6+11*x^5+17*x^4+67*x^3+48*x^2+45', 'y^2=19*x^6+37*x^5+10*x^4+52*x^3+62*x^2+54*x+72', 'y^2=57*x^6+32*x^5+30*x^4+77*x^3+28*x^2+4*x+58', 'y^2=77*x^6+13*x^5+29*x^4+66*x^3+29*x^2+13*x+77', 'y^2=73*x^6+39*x^5+8*x^4+40*x^3+8*x^2+39*x+73', 'y^2=45*x^6+61*x^5+44*x^4+31*x^3+24*x^2+56*x+67', 'y^2=38*x^6+12*x^5+43*x^4+39*x^3+33*x^2+43*x+65', 'y^2=35*x^6+36*x^5+50*x^4+38*x^3+20*x^2+50*x+37', 'y^2=72*x^6+12*x^5+44*x^4+68*x^3+44*x^2+12*x+72', 'y^2=58*x^6+36*x^5+53*x^4+46*x^3+53*x^2+36*x+58', 'y^2=30*x^6+18*x^5+43*x^4+x^3+15*x^2+13*x+59', 'y^2=11*x^6+54*x^5+50*x^4+3*x^3+45*x^2+39*x+19', 'y^2=3*x^6+26*x^5+76*x^4+45*x^3+76*x^2+26*x+3', 'y^2=9*x^6+78*x^5+70*x^4+56*x^3+70*x^2+78*x+9', 'y^2=53*x^6+65*x^5+8*x^4+12*x^3+66*x^2+5*x+23', 'y^2=11*x^6+32*x^4+32*x^2+11', 'y^2=33*x^6+17*x^4+17*x^2+33', 'y^2=11*x^6+17*x^4+51*x^2+60', 'y^2=70*x^6+x^4+3*x^2+73', 'y^2=65*x^6+40*x^5+62*x^4+2*x^3+42*x^2+55*x+33', 'y^2=37*x^6+41*x^5+28*x^4+6*x^3+47*x^2+7*x+20', 'y^2=13*x^6+5*x^5+14*x^4+56*x^3+48*x^2+62*x+20', 'y^2=39*x^6+15*x^5+42*x^4+10*x^3+65*x^2+28*x+60', 'y^2=29*x^6+12*x^5+31*x^4+35*x^3+31*x^2+12*x+29', 'y^2=8*x^6+36*x^5+14*x^4+26*x^3+14*x^2+36*x+8', 'y^2=74*x^6+62*x^5+25*x^4+48*x^3+70*x^2+44*x+24', 'y^2=64*x^6+28*x^5+75*x^4+65*x^3+52*x^2+53*x+72', 'y^2=64*x^6+77*x^5+6*x^4+25*x^3+59*x^2+48*x+64', 'y^2=34*x^6+73*x^5+18*x^4+75*x^3+19*x^2+65*x+34', 'y^2=58*x^6+11*x^5+66*x^4+56*x^3+66*x^2+11*x+58', 'y^2=16*x^6+33*x^5+40*x^4+10*x^3+40*x^2+33*x+16', 'y^2=53*x^6+23*x^5+2*x^4+8*x^3+52*x^2+64*x+39', 'y^2=x^6+69*x^5+6*x^4+24*x^3+77*x^2+34*x+38', 'y^2=59*x^6+16*x^5+6*x^4+4*x^3+6*x^2+16*x+59', 'y^2=19*x^6+48*x^5+18*x^4+12*x^3+18*x^2+48*x+19', 'y^2=49*x^6+43*x^5+26*x^4+6*x^3+38*x^2+61*x+51', 'y^2=68*x^6+50*x^5+78*x^4+18*x^3+35*x^2+25*x+74', 'y^2=63*x^6+30*x^5+50*x^4+18*x^3+50*x^2+30*x+63', 'y^2=31*x^6+11*x^5+71*x^4+54*x^3+71*x^2+11*x+31', 'y^2=34*x^6+21*x^5+63*x^4+46*x^3+6*x^2+61*x+24', 'y^2=23*x^6+63*x^5+31*x^4+59*x^3+18*x^2+25*x+72', 'y^2=77*x^6+21*x^5+27*x^4+30*x^3+5*x^2+16*x+45', 'y^2=9*x^6+57*x^5+67*x^4+6*x^3+72*x^2+45*x+2', 'y^2=27*x^6+13*x^5+43*x^4+18*x^3+58*x^2+56*x+6', 'y^2=66*x^6+23*x^5+68*x^4+59*x^3+61*x^2+54*x+46', 'y^2=40*x^6+69*x^5+46*x^4+19*x^3+25*x^2+4*x+59', 'y^2=50*x^6+67*x^5+16*x^4+54*x^3+37*x^2+25*x+25', 'y^2=71*x^6+43*x^5+48*x^4+4*x^3+32*x^2+75*x+75', 'y^2=22*x^6+38*x^5+46*x^4+50*x^3+40*x^2+25*x+67', 'y^2=66*x^6+35*x^5+59*x^4+71*x^3+41*x^2+75*x+43', 'y^2=2*x^6+3*x^5+24*x^4+67*x^3+24*x^2+3*x+2', 'y^2=6*x^6+9*x^5+72*x^4+43*x^3+72*x^2+9*x+6', 'y^2=74*x^6+33*x^4+33*x^2+74', 'y^2=64*x^6+20*x^4+20*x^2+64', 'y^2=74*x^6+20*x^4+60*x^2+23', 'y^2=7*x^6+77*x^4+73*x^2+31', 'y^2=33*x^6+77*x^5+3*x^4+9*x^2+18*x+22', 'y^2=25*x^6+29*x^5+56*x^4+4*x^3+67*x^2+63*x+66', 'y^2=5*x^6+11*x^5+67*x^4+70*x^3+76*x^2+11*x+8', 'y^2=15*x^6+33*x^5+43*x^4+52*x^3+70*x^2+33*x+24', 'y^2=44*x^6+51*x^5+68*x^4+11*x^3+26*x^2+21*x+24', 'y^2=53*x^6+74*x^5+46*x^4+33*x^3+78*x^2+63*x+72', 'y^2=54*x^6+7*x^5+55*x^4+12*x^3+8*x^2+71*x+77', 'y^2=4*x^6+21*x^5+7*x^4+36*x^3+24*x^2+55*x+73', 'y^2=64*x^5+32*x^4+67*x^3+32*x^2+64*x', 'y^2=34*x^5+17*x^4+43*x^3+17*x^2+34*x', 'y^2=43*x^6+33*x^5+77*x^4+53*x^3+67*x^2+68*x+20', 'y^2=50*x^6+20*x^5+73*x^4+x^3+43*x^2+46*x+60', 'y^2=39*x^6+44*x^5+9*x^4+72*x^3+x^2+72*x+54', 'y^2=38*x^6+53*x^5+27*x^4+58*x^3+3*x^2+58*x+4', 'y^2=54*x^6+37*x^5+50*x^4+46*x^3+23*x^2+45*x+71', 'y^2=4*x^6+32*x^5+71*x^4+59*x^3+69*x^2+56*x+55', 'y^2=53*x^6+67*x^5+44*x^4+62*x^3+x^2+64', 'y^2=x^6+43*x^5+53*x^4+28*x^3+3*x^2+34', 'y^2=45*x^6+2*x^5+76*x^4+75*x^3+70*x^2+18*x+30', 'y^2=66*x^6+18*x^5+59*x^4+50*x^3+60*x^2+4*x+35', 'y^2=40*x^6+54*x^5+19*x^4+71*x^3+22*x^2+12*x+26', 'y^2=45*x^6+77*x^5+40*x^4+54*x^3+40*x^2+77*x+45', 'y^2=56*x^6+73*x^5+41*x^4+4*x^3+41*x^2+73*x+56', 'y^2=22*x^6+3*x^5+75*x^4+33*x^3+13*x^2+2*x+74', 'y^2=66*x^6+9*x^5+67*x^4+20*x^3+39*x^2+6*x+64', 'y^2=28*x^6+38*x^5+66*x^4+4*x^3+62*x^2+29*x+22', 'y^2=5*x^6+35*x^5+40*x^4+12*x^3+28*x^2+8*x+66', 'y^2=23*x^6+34*x^5+72*x^4+54*x^3+46*x^2+14*x+40', 'y^2=69*x^6+23*x^5+58*x^4+4*x^3+59*x^2+42*x+41', 'y^2=10*x^6+47*x^5+58*x^4+28*x^3+58*x^2+47*x+10', 'y^2=30*x^6+62*x^5+16*x^4+5*x^3+16*x^2+62*x+30', 'y^2=20*x^6+53*x^5+42*x^4+14*x^3+78*x^2+78*x+24', 'y^2=10*x^6+37*x^4+37*x^2+10', 'y^2=30*x^6+32*x^4+32*x^2+30', 'y^2=10*x^6+32*x^4+17*x^2+33', 'y^2=71*x^6+65*x^4+37*x^2+21', 'y^2=67*x^6+38*x^5+63*x^4+78*x^3+2*x^2+50*x+27', 'y^2=43*x^6+35*x^5+31*x^4+76*x^3+6*x^2+71*x+2', 'y^2=x^5+78*x', 'y^2=x^5+x', 'y^2=76*x^6+60*x^5+55*x^4+18*x^3+46*x^2+46*x+50', 'y^2=70*x^6+22*x^5+7*x^4+54*x^3+59*x^2+59*x+71', 'y^2=68*x^6+47*x^5+62*x^4+19*x^3+13*x^2+5*x+49', 'y^2=46*x^6+62*x^5+28*x^4+57*x^3+39*x^2+15*x+68', 'y^2=42*x^6+64*x^5+69*x^4+71*x^3+29*x^2+20*x+36', 'y^2=47*x^6+34*x^5+49*x^4+55*x^3+8*x^2+60*x+29', 'y^2=75*x^6+38*x^5+52*x^4+66*x^3+52*x^2+38*x+75', 'y^2=67*x^6+35*x^5+77*x^4+40*x^3+77*x^2+35*x+67', 'y^2=62*x^6+8*x^5+56*x^4+38*x^3+43*x^2+42*x+8', 'y^2=28*x^6+24*x^5+10*x^4+35*x^3+50*x^2+47*x+24', 'y^2=38*x^6+52*x^5+72*x^4+59*x^3+72*x^2+52*x+38', 'y^2=35*x^6+77*x^5+58*x^4+19*x^3+58*x^2+77*x+35', 'y^2=10*x^6+50*x^5+78*x^4+77*x^3+41*x^2+70*x+71', 'y^2=30*x^6+71*x^5+76*x^4+73*x^3+44*x^2+52*x+55'], 'dim1_distinct': 1, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'g': 2, 'galois_groups': ['2T1'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 1, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['1T1'], 'geometric_number_fields': ['1.1.1.1'], 'geometric_splitting_field': '1.1.1.1', 'geometric_splitting_polynomials': [[0, 1]], 'has_geom_ss_factor': True, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 149, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': False, 'is_squarefree': False, 'is_supersingular': True, 'jacobian_count': 149, 'label': '2.79.a_gc', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 4, 'max_twist_degree': 12, 'newton_coelevation': 0, 'newton_elevation': 2, 'number_fields': ['2.0.79.1'], 'p': 79, 'p_rank': 0, 'p_rank_deficit': 2, 'poly': [1, 0, 158, 0, 6241], 'poly_str': '1 0 158 0 6241 ', 'primitive_models': [], 'q': 79, 'real_poly': [1], 'simple_distinct': ['1.79.a'], 'simple_factors': ['1.79.aA', '1.79.aB'], 'simple_multiplicities': [2], 'slopes': ['1/2A', '1/2B', '1/2C', '1/2D'], 'splitting_field': '2.0.79.1', 'splitting_polynomials': [[20, -1, 1]], 'twist_count': 5, 'twists': [['2.79.a_adb', '2.493039.a_cecsc', 3], ['2.79.a_agc', '2.38950081.abkye_trkoug', 4], ['2.79.a_a', '2.1517108809906561.ancyjwe_cmmnlfdzejog', 8], ['2.79.a_db', '2.59091511031674153381441.aerbqdwwue_idkaxnsshfevqbkig', 12]]}
- 
              av_fq_endalg_factors •   Show schema
  Hide schema
   
        
                      - 
              id: 92849
              {'base_label': '2.79.a_gc', 'extension_degree': 1, 'extension_label': '1.79.a', 'multiplicity': 2}
- 
              id: 92850
              {'base_label': '2.79.a_gc', 'extension_degree': 2, 'extension_label': '1.6241.gc', 'multiplicity': 2}
 
- 
              av_fq_endalg_data •   Show schema
  Hide schema
   
        {'brauer_invariants': ['0'], 'center': '2.0.79.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.79.a', 'galois_group': '2T1', 'places': [['39', '1']]}
- 
              av_fq_endalg_data •   Show schema
  Hide schema
   
        {'brauer_invariants': ['1/2'], 'center': '1.1.1.1', 'center_dim': 1, 'divalg_dim': 4, 'extension_label': '1.6241.gc', 'galois_group': '1T1', 'places': [['0']]}