-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 5040, 'abvar_counts': [5040, 21288960, 90118208880, 405808452403200, 1822988492244889200, 8182764153567936092160, 36732173126348199246006960, 164890956069491335709353574400, 740195529005616379265954418254640, 3322737659524337636146674116000716800], 'abvar_counts_str': '5040 21288960 90118208880 405808452403200 1822988492244889200 8182764153567936092160 36732173126348199246006960 164890956069491335709353574400 740195529005616379265954418254640 3322737659524337636146674116000716800 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.53898513315333, 0.578570930462122], 'center_dim': 4, 'cohen_macaulay_max': 2, 'curve_count': 74, 'curve_counts': [74, 4738, 299630, 20138254, 1350236714, 90458882386, 6060703019438, 406067670940126, 27206534953103690, 1822837803356510818], 'curve_counts_str': '74 4738 299630 20138254 1350236714 90458882386 6060703019438 406067670940126 27206534953103690 1822837803356510818 ', 'curves': ['y^2=x^6+23*x^5+10*x^4+14*x^3+62*x^2+56*x+25', 'y^2=58*x^6+18*x^5+32*x^4+7*x^3+32*x^2+18*x+58', 'y^2=32*x^6+10*x^5+58*x^4+36*x^3+58*x^2+10*x+32', 'y^2=x^6+52*x^5+10*x^4+51*x^3+4*x^2+11*x+14', 'y^2=4*x^6+42*x^5+66*x^4+52*x^3+66*x^2+42*x+4', 'y^2=9*x^6+48*x^5+2*x^4+22*x^3+58*x^2+34*x+9', 'y^2=30*x^6+39*x^5+21*x^4+44*x^3+21*x^2+39*x+30', 'y^2=55*x^6+21*x^5+15*x^4+48*x^3+15*x^2+21*x+55', 'y^2=36*x^6+33*x^5+16*x^4+20*x^3+16*x^2+33*x+36', 'y^2=31*x^6+44*x^5+36*x^4+x^3+36*x^2+44*x+31', 'y^2=47*x^6+2*x^5+17*x^4+48*x^3+17*x^2+2*x+47', 'y^2=62*x^6+37*x^5+37*x^4+47*x^3+37*x^2+37*x+62', 'y^2=37*x^6+11*x^5+36*x^4+42*x^3+22*x^2+13*x+23', 'y^2=43*x^6+23*x^5+26*x^4+39*x^3+26*x^2+23*x+43', 'y^2=53*x^6+57*x^5+33*x^4+47*x^3+33*x^2+57*x+53', 'y^2=54*x^6+55*x^5+9*x^4+56*x^3+9*x^2+55*x+54', 'y^2=26*x^6+10*x^5+59*x^3+64*x+35', 'y^2=12*x^6+34*x^5+57*x^4+4*x^3+57*x^2+34*x+12', 'y^2=48*x^6+29*x^5+12*x^4+26*x^3+43*x^2+49*x+18', 'y^2=28*x^6+33*x^5+2*x^4+33*x^3+58*x^2+15*x+28', 'y^2=65*x^6+61*x^5+5*x^4+17*x^3+5*x^2+61*x+65', 'y^2=53*x^6+43*x^5+18*x^4+17*x^3+18*x^2+43*x+53', 'y^2=37*x^6+26*x^5+40*x^4+57*x^3+40*x^2+26*x+37', 'y^2=49*x^6+35*x^5+50*x^4+25*x^3+8*x^2+62*x+23', 'y^2=16*x^6+39*x^5+61*x^4+21*x^3+61*x^2+39*x+16', 'y^2=11*x^6+55*x^5+38*x^4+17*x^3+3*x^2+17*x+38', 'y^2=40*x^6+4*x^5+12*x^4+25*x^3+12*x^2+4*x+40', 'y^2=64*x^6+37*x^5+31*x^4+44*x^3+31*x^2+37*x+64', 'y^2=27*x^6+22*x^5+64*x^4+48*x^3+26*x^2+37*x+45', 'y^2=51*x^6+10*x^5+7*x^3+14*x+57', 'y^2=6*x^6+38*x^5+25*x^4+32*x^3+17*x^2+18*x+19', 'y^2=3*x^6+61*x^5+38*x^4+30*x^3+63*x^2+30*x+58', 'y^2=29*x^6+26*x^5+37*x^4+21*x^3+23*x^2+33*x+21', 'y^2=6*x^6+66*x^5+59*x^4+53*x^3+49*x^2+41*x+16', 'y^2=41*x^6+15*x^5+57*x^4+35*x^3+44*x^2+9*x+7', 'y^2=51*x^6+56*x^5+59*x^4+49*x^3+59*x^2+56*x+51', 'y^2=65*x^6+18*x^5+61*x^4+44*x^3+61*x^2+18*x+65', 'y^2=7*x^6+16*x^5+12*x^4+40*x^3+12*x^2+16*x+7', 'y^2=30*x^6+32*x^5+28*x^4+61*x^3+28*x^2+32*x+30', 'y^2=42*x^6+57*x^5+66*x^4+47*x^3+46*x^2+12*x+27', 'y^2=64*x^6+43*x^5+27*x^4+20*x^3+27*x^2+43*x+64', 'y^2=20*x^6+5*x^5+36*x^4+12*x^3+9*x^2+38*x+38', 'y^2=28*x^6+65*x^5+34*x^4+60*x^3+34*x^2+65*x+28', 'y^2=27*x^6+38*x^4+41*x^3+52*x^2+5', 'y^2=37*x^6+36*x^5+21*x^4+47*x^3+21*x^2+36*x+37', 'y^2=39*x^6+9*x^5+43*x^4+56*x^3+13*x^2+33*x+37', 'y^2=25*x^6+56*x^5+51*x^4+13*x^3+61*x^2+33*x+64', 'y^2=28*x^6+58*x^5+29*x^4+24*x^3+9*x^2+31*x+44', 'y^2=46*x^6+59*x^5+36*x^4+35*x^3+36*x^2+59*x+46', 'y^2=55*x^6+65*x^5+32*x^4+65*x^3+46*x^2+10*x+36', 'y^2=58*x^6+26*x^5+4*x^4+20*x^3+4*x^2+26*x+58', 'y^2=3*x^6+22*x^5+61*x^4+9*x^3+13*x^2+40*x+43', 'y^2=39*x^6+5*x^4+13*x^3+28*x^2+37', 'y^2=66*x^6+5*x^5+50*x^4+6*x^3+61*x^2+66*x+45', 'y^2=56*x^6+55*x^5+63*x^4+9*x^3+63*x^2+55*x+56', 'y^2=22*x^6+57*x^5+57*x^4+36*x^3+57*x^2+57*x+22', 'y^2=9*x^6+10*x^5+46*x^4+48*x^3+46*x^2+10*x+9', 'y^2=37*x^6+10*x^5+35*x^4+52*x^3+35*x^2+10*x+37', 'y^2=48*x^6+55*x^5+41*x^4+22*x^3+66*x^2+65*x+57', 'y^2=7*x^6+46*x^5+34*x^4+2*x^3+34*x^2+46*x+7', 'y^2=44*x^6+6*x^5+62*x^4+48*x^3+62*x^2+6*x+44', 'y^2=20*x^6+17*x^5+15*x^4+50*x^3+62*x^2+54*x+34', 'y^2=28*x^6+45*x^5+2*x^4+15*x^3+2*x^2+45*x+28', 'y^2=25*x^6+32*x^5+50*x^4+39*x^3+50*x^2+32*x+25', 'y^2=62*x^6+58*x^5+45*x^4+45*x^3+45*x^2+58*x+62', 'y^2=41*x^6+25*x^5+45*x^4+10*x^3+50*x^2+35*x+34', 'y^2=44*x^6+16*x^5+41*x^4+39*x^3+43*x^2+62*x+44', 'y^2=35*x^6+55*x^5+23*x^4+14*x^3+37*x^2+21*x+26', 'y^2=5*x^6+55*x^5+22*x^4+17*x^3+22*x^2+55*x+5', 'y^2=43*x^6+66*x^5+52*x^4+41*x^3+52*x^2+66*x+43', 'y^2=49*x^6+46*x^5+17*x^4+x^3+47*x^2+2*x+16', 'y^2=x^6+33*x^5+10*x^4+43*x^3+4*x^2+16*x+14', 'y^2=57*x^6+48*x^5+x^4+32*x^3+39*x^2+45*x+28', 'y^2=2*x^6+43*x^5+34*x^4+29*x^3+38*x^2+66*x+51', 'y^2=62*x^6+63*x^5+49*x^4+16*x^3+49*x^2+63*x+62', 'y^2=30*x^6+14*x^5+30*x^4+4*x^3+48*x^2+x+13', 'y^2=58*x^6+29*x^5+51*x^4+58*x^3+51*x^2+29*x+58', 'y^2=33*x^6+2*x^5+12*x^4+4*x^3+12*x^2+2*x+33', 'y^2=19*x^6+49*x^5+18*x^4+51*x^3+18*x^2+49*x+19', 'y^2=59*x^6+45*x^5+58*x^3+11*x+40'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 12, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.264.1', '2.0.7.1'], 'geometric_splitting_field': '4.0.3415104.17', 'geometric_splitting_polynomials': [[4162, -136, 137, -2, 1]], 'group_structure_count': 8, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 80, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 80, 'label': '2.67.g_fm', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.264.1', '2.0.7.1'], 'p': 67, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 6, 142, 402, 4489], 'poly_str': '1 6 142 402 4489 ', 'primitive_models': [], 'q': 67, 'real_poly': [1, 6, 8], 'simple_distinct': ['1.67.c', '1.67.e'], 'simple_factors': ['1.67.cA', '1.67.eA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['2,F+1', '3,-2*V+2'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.3415104.17', 'splitting_polynomials': [[4162, -136, 137, -2, 1]], 'twist_count': 4, 'twists': [['2.67.ag_fm', '2.4489.jo_bjzi', 2], ['2.67.ac_ew', '2.4489.jo_bjzi', 2], ['2.67.c_ew', '2.4489.jo_bjzi', 2]], 'weak_equivalence_count': 14, 'zfv_index': 24, 'zfv_index_factorization': [[2, 3], [3, 1]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 66528, 'zfv_singular_count': 4, 'zfv_singular_primes': ['2,F+1', '3,-2*V+2']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 68848
{'base_label': '2.67.g_fm', 'extension_degree': 1, 'extension_label': '1.67.c', 'multiplicity': 1}
-
id: 68849
{'base_label': '2.67.g_fm', 'extension_degree': 1, 'extension_label': '1.67.e', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.264.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.67.c', 'galois_group': '2T1', 'places': [['1', '1'], ['66', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.7.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.67.e', 'galois_group': '2T1', 'places': [['11', '1'], ['55', '1']]}