-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 3667, 'abvar_counts': [3667, 20428857, 90416881636, 405964227903129, 1822928517221101027, 8182826844815177609616, 36732248504536394544956059, 164890953093920122065600448425, 740195517274858371926095987903684, 3322737665009181878967184473717349977], 'abvar_counts_str': '3667 20428857 90416881636 405964227903129 1822928517221101027 8182826844815177609616 36732248504536394544956059 164890953093920122065600448425 740195517274858371926095987903684 3322737665009181878967184473717349977 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.159890564181287, 0.50677610248538], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 54, 'curve_counts': [54, 4552, 300624, 20145988, 1350192294, 90459575422, 6060715456626, 406067663612356, 27206534521929408, 1822837806365469832], 'curve_counts_str': '54 4552 300624 20145988 1350192294 90459575422 6060715456626 406067663612356 27206534521929408 1822837806365469832 ', 'curves': ['y^2=63*x^6+4*x^5+63*x^4+30*x^3+66*x^2+2*x+17', 'y^2=7*x^6+42*x^5+23*x^4+18*x^3+39*x^2+26*x+10', 'y^2=48*x^6+51*x^5+8*x^4+17*x^3+45*x^2+40*x+3', 'y^2=32*x^6+30*x^5+10*x^4+14*x^3+7*x^2+56*x+48', 'y^2=21*x^6+44*x^5+5*x^4+33*x^3+47*x^2+53*x+63', 'y^2=21*x^6+53*x^5+32*x^4+43*x^3+37*x^2+59*x+43', 'y^2=30*x^6+11*x^4+15*x^3+21*x^2+23*x+7', 'y^2=45*x^6+24*x^5+44*x^4+57*x^3+16*x^2+29*x+25', 'y^2=4*x^6+12*x^5+55*x^4+41*x^3+35*x^2+15*x+40', 'y^2=23*x^6+27*x^5+4*x^4+5*x^2+48*x+34', 'y^2=x^6+55*x^5+26*x^4+3*x^3+2*x^2+35*x+31', 'y^2=31*x^6+15*x^5+21*x^4+55*x^3+2*x^2+43*x+12', 'y^2=26*x^6+40*x^5+46*x^4+8*x^3+23*x^2+45*x+17', 'y^2=19*x^6+53*x^5+50*x^4+54*x^2+36*x+12', 'y^2=7*x^6+35*x^5+32*x^4+65*x^3+5*x^2+51*x+46', 'y^2=43*x^6+19*x^5+47*x^4+41*x^3+11*x^2+46*x+39', 'y^2=58*x^6+29*x^5+23*x^4+7*x^3+13*x^2+51*x+61', 'y^2=38*x^6+24*x^5+60*x^4+40*x^3+4*x^2+30*x+31', 'y^2=14*x^6+45*x^5+25*x^4+29*x^3+66*x^2+54*x+48', 'y^2=50*x^6+7*x^5+24*x^4+14*x^3+24*x^2+38*x+53', 'y^2=50*x^6+58*x^5+58*x^4+33*x^3+32*x^2+5*x+30', 'y^2=58*x^6+64*x^5+30*x^4+50*x^3+48*x^2+23*x+66', 'y^2=5*x^6+46*x^5+5*x^4+50*x^3+55*x^2+60*x+41', 'y^2=66*x^6+22*x^5+22*x^4+49*x^3+17*x^2+7*x+28', 'y^2=2*x^6+16*x^5+21*x^4+20*x^3+42*x^2+34*x+47', 'y^2=12*x^6+39*x^5+63*x^4+18*x^3+3*x^2+29*x+66', 'y^2=30*x^6+29*x^5+54*x^4+44*x^3+55*x^2+60*x+16', 'y^2=61*x^6+45*x^5+34*x^4+9*x^3+66*x^2+21*x+11', 'y^2=x^6+54*x^5+22*x^4+8*x^3+21*x^2+23*x+28', 'y^2=66*x^6+11*x^5+6*x^4+29*x^3+17*x^2+66*x+65', 'y^2=53*x^6+4*x^5+61*x^4+16*x^3+58*x^2+22*x+35', 'y^2=2*x^6+46*x^5+15*x^4+55*x^3+7*x^2+9*x+2', 'y^2=48*x^6+54*x^5+44*x^4+22*x^3+19*x^2+26*x+33', 'y^2=41*x^6+18*x^5+12*x^4+53*x^3+9*x^2+52*x+60', 'y^2=4*x^6+39*x^5+33*x^4+65*x^3+36*x^2+36*x+18', 'y^2=49*x^6+21*x^5+66*x^4+58*x^3+31*x^2+63*x+52', 'y^2=53*x^6+47*x^5+22*x^4+18*x^3+58*x^2+53*x+31', 'y^2=39*x^6+56*x^5+45*x^4+27*x^3+52*x^2+56*x+18', 'y^2=63*x^6+33*x^5+31*x^4+38*x^3+14*x^2+7*x+16', 'y^2=19*x^6+66*x^5+34*x^4+50*x^3+5*x^2+25*x+11', 'y^2=20*x^6+32*x^5+55*x^4+66*x^3+23*x^2+27*x+23', 'y^2=39*x^6+3*x^5+25*x^4+54*x^3+14*x^2+59*x+50', 'y^2=10*x^6+26*x^5+28*x^4+34*x^3+24*x^2+7*x+2', 'y^2=10*x^6+27*x^5+23*x^4+56*x^3+66*x^2+7*x+61', 'y^2=51*x^6+43*x^5+30*x^4+28*x^3+54*x^2+34*x+25', 'y^2=63*x^6+40*x^5+55*x^4+10*x^3+23*x^2+4*x+28', 'y^2=66*x^6+45*x^5+39*x^4+3*x^3+8*x^2+17*x+36', 'y^2=30*x^6+60*x^5+29*x^4+16*x^3+7*x^2+47*x+60', 'y^2=24*x^6+31*x^5+11*x^4+64*x^3+12*x^2+52*x+35', 'y^2=46*x^6+32*x^5+21*x^4+62*x^3+14*x^2+66*x+8', 'y^2=12*x^6+58*x^5+16*x^4+40*x^3+12*x^2+11*x+10', 'y^2=2*x^6+2*x^3+20', 'y^2=53*x^6+48*x^5+8*x^4+63*x^3+25*x^2+45*x+39', 'y^2=3*x^6+57*x^5+50*x^4+61*x^3+39*x^2+3*x+63', 'y^2=x^6+66*x^5+19*x^4+56*x^3+21*x^2+22*x+3', 'y^2=39*x^6+18*x^5+32*x^4+31*x^3+22*x^2+39*x+12', 'y^2=4*x^6+16*x^5+15*x^4+36*x^3+9*x^2+54*x+26', 'y^2=11*x^6+53*x^5+2*x^4+14*x^3+9*x^2+20*x+11', 'y^2=24*x^6+35*x^5+59*x^4+22*x^3+4*x^2+51*x+3', 'y^2=56*x^6+56*x^5+19*x^4+42*x^3+41*x^2+34*x+58', 'y^2=20*x^6+18*x^5+44*x^4+41*x^3+9*x^2+43*x+36', 'y^2=61*x^6+5*x^5+5*x^4+29*x^3+53*x^2+9*x+35', 'y^2=3*x^6+56*x^5+46*x^4+x^3+34*x^2+52*x+53', 'y^2=27*x^6+27*x^5+37*x^4+36*x^3+2*x^2+54*x+56', 'y^2=18*x^6+24*x^4+65*x^3+42*x^2+51*x+64', 'y^2=45*x^6+49*x^5+33*x^4+42*x^3+33*x^2+21*x+16', 'y^2=51*x^6+34*x^5+44*x^4+58*x^3+41*x^2+53*x+35', 'y^2=33*x^6+61*x^5+12*x^4+40*x^3+19*x^2+48*x+8', 'y^2=57*x^6+61*x^5+45*x^4+48*x^3+8*x^2+58*x+37', 'y^2=58*x^6+12*x^5+2*x^4+19*x^3+38*x^2+56*x+15', 'y^2=14*x^6+36*x^5+35*x^4+32*x^3+2*x^2+3*x+61', 'y^2=18*x^6+45*x^5+13*x^4+51*x^3+10*x^2+39*x+13', 'y^2=43*x^6+7*x^5+65*x^4+24*x^3+59*x^2+13*x+63', 'y^2=64*x^6+61*x^5+5*x^4+22*x^3+47*x^2+14*x+8', 'y^2=40*x^6+13*x^5+65*x^4+53*x^3+36*x^2+30*x+13', 'y^2=52*x^6+54*x^5+47*x^4+64*x^3+2*x^2+2*x+24', 'y^2=8*x^6+51*x^5+12*x^4+61*x^3+9*x^2+60*x+63', 'y^2=16*x^6+52*x^5+53*x^4+21*x^3+55*x^2+22*x+28', 'y^2=41*x^6+63*x^5+56*x^4+42*x^3+35*x^2+21*x+15', 'y^2=37*x^6+12*x^5+31*x^4+62*x^3+66*x^2+25*x+59', 'y^2=47*x^6+5*x^5+4*x^4+30*x^3+35*x^2+14*x+5', 'y^2=53*x^6+33*x^5+12*x^4+55*x^3+16*x^2+29*x+29', 'y^2=57*x^6+35*x^5+63*x^4+10*x^3+60*x^2+20*x+12', 'y^2=33*x^6+52*x^5+25*x^4+52*x^3+50*x^2+47*x+27', 'y^2=15*x^6+50*x^5+6*x^4+13*x^3+66*x^2+39*x+46', 'y^2=45*x^6+10*x^5+20*x^4+28*x^3+41*x^2+61*x+18', 'y^2=41*x^6+32*x^5+3*x^4+55*x^3+22*x^2+56*x+53', 'y^2=24*x^6+46*x^5+17*x^4+54*x^3+50*x^2+15*x+37', 'y^2=50*x^6+5*x^5+45*x^4+53*x^3+4*x^2+53*x+24', 'y^2=53*x^6+26*x^5+16*x^4+62*x^3+28*x^2+13*x+36', 'y^2=26*x^6+32*x^5+6*x^4+4*x^3+32*x^2+57*x+18', 'y^2=29*x^6+22*x^5+51*x^4+19*x^3+6*x^2+19*x+18', 'y^2=57*x^6+45*x^5+18*x^4+42*x^3+31*x^2+31*x+8', 'y^2=3*x^6+41*x^5+8*x^4+59*x^3+51*x^2+24*x+9', 'y^2=61*x^6+27*x^5+61*x^4+60*x^3+38*x^2+41*x+50', 'y^2=22*x^6+2*x^5+45*x^4+49*x^3+26*x^2+31*x+50', 'y^2=27*x^6+35*x^5+59*x^4+16*x^3+51*x^2+41*x+5', 'y^2=54*x^6+23*x^5+49*x^4+34*x^3+19*x^2+16*x+48', 'y^2=2*x^6+31*x^5+47*x^4+17*x^3+8*x^2+7*x+28', 'y^2=38*x^6+19*x^5+36*x^4+50*x^3+39*x^2+23*x+64', 'y^2=2*x^6+2*x^3+41', 'y^2=39*x^6+42*x^5+32*x^4+38*x^3+19*x^2+34*x+31', 'y^2=64*x^6+21*x^5+66*x^4+38*x^3+58*x^2+57*x+45', 'y^2=14*x^6+38*x^5+3*x^4+47*x^3+52*x^2+55*x+61', 'y^2=14*x^6+23*x^5+4*x^4+6*x^3+5*x^2+19*x+53', 'y^2=39*x^6+4*x^5+34*x^4+16*x^3+57*x^2+2*x+41', 'y^2=60*x^6+49*x^5+36*x^4+61*x^3+13*x^2+21*x+6', 'y^2=30*x^6+60*x^5+42*x^4+19*x^3+5*x^2+23*x+34', 'y^2=43*x^6+48*x^5+43*x^4+12*x^3+46*x^2+10*x+63', 'y^2=5*x^6+x^5+16*x^4+18*x^3+5*x^2+51*x+29', 'y^2=35*x^6+18*x^5+8*x^4+36*x^3+19*x^2+50*x+3', 'y^2=12*x^6+36*x^5+50*x^4+13*x^3+58*x^2+42*x+3', 'y^2=9*x^6+58*x^5+63*x^4+21*x^3+18*x^2+9*x+14', 'y^2=44*x^6+7*x^5+13*x^4+13*x^3+56*x^2+24*x+64', 'y^2=7*x^6+47*x^5+16*x^4+56*x^3+57*x^2+16*x+38', 'y^2=57*x^6+59*x^5+28*x^4+62*x^3+58*x^2+26*x+35', 'y^2=60*x^6+18*x^5+25*x^4+3*x^3+6*x^2+22*x+49', 'y^2=8*x^6+64*x^5+14*x^4+7*x^3+20*x^2+56*x+25', 'y^2=51*x^6+14*x^5+44*x^4+18*x^3+20*x^2+32*x+60', 'y^2=27*x^6+65*x^5+29*x^4+20*x^3+32*x^2+2*x+42', 'y^2=64*x^6+14*x^5+61*x^4+36*x^3+48*x^2+14*x+58', 'y^2=41*x^6+27*x^5+3*x^4+22*x^3+60*x^2+19*x+62', 'y^2=39*x^6+7*x^5+14*x^4+48*x^3+31*x^2+52*x+37', 'y^2=39*x^6+4*x^5+62*x^4+61*x^3+48*x^2+9*x+12', 'y^2=29*x^6+2*x^5+4*x^4+17*x^3+51*x^2+32*x+2', 'y^2=18*x^6+55*x^5+55*x^4+49*x^3+38*x^2+61*x+20', 'y^2=13*x^6+65*x^5+11*x^4+51*x^3+38*x^2+37*x+15', 'y^2=28*x^6+3*x^5+3*x^4+56*x^3+33*x^2+x+42', 'y^2=15*x^6+4*x^5+42*x^4+53*x^3+41*x^2+43*x+34', 'y^2=13*x^6+28*x^5+49*x^4+10*x^3+65*x^2+21*x+3', 'y^2=53*x^6+51*x^5+14*x^4+11*x^3+12*x^2+41*x+41'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 8, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 3, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.8.1'], 'geometric_splitting_field': '2.0.8.1', 'geometric_splitting_polynomials': [[2, 0, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 131, 'is_cyclic': True, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 131, 'label': '2.67.ao_ez', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 24, 'newton_coelevation': 2, 'newton_elevation': 0, 'noncyclic_primes': [], 'number_fields': ['4.0.576.1'], 'p': 67, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -14, 129, -938, 4489], 'poly_str': '1 -14 129 -938 4489 ', 'primitive_models': [], 'q': 67, 'real_poly': [1, -14, -5], 'simple_distinct': ['2.67.ao_ez'], 'simple_factors': ['2.67.ao_ezA'], 'simple_multiplicities': [1], 'singular_primes': ['3,-3*F^2-F-4', '43,22*F^2-19*F-4*V+52'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.576.1', 'splitting_polynomials': [[4, 0, -2, 0, 1]], 'twist_count': 8, 'twists': [['2.67.o_ez', '2.4489.ck_ayv', 2], ['2.67.bc_ms', '2.300763.afk_bincc', 3], ['2.67.abc_ms', '2.90458382169.cpxei_covyqkhgo', 6], ['2.67.a_ack', '2.90458382169.cpxei_covyqkhgo', 6], ['2.67.a_ck', '2.8182718904632857144561.abrphpcibk_bcarkwdtbquybbjgo', 12], ['2.67.am_cu', '2.66956888672235945457062019127709902451882721.arapgazhtkemehnku_eqbdmowkrcrjgufytnwuazxapdclgxny', 24], ['2.67.m_cu', '2.66956888672235945457062019127709902451882721.arapgazhtkemehnku_eqbdmowkrcrjgufytnwuazxapdclgxny', 24]], 'weak_equivalence_count': 8, 'zfv_index': 1161, 'zfv_index_factorization': [[3, 3], [43, 1]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 3, 'zfv_plus_index_factorization': [[3, 1]], 'zfv_plus_norm': 16641, 'zfv_singular_count': 4, 'zfv_singular_primes': ['3,-3*F^2-F-4', '43,22*F^2-19*F-4*V+52']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 67661
{'base_label': '2.67.ao_ez', 'extension_degree': 1, 'extension_label': '2.67.ao_ez', 'multiplicity': 1}
-
id: 67662
{'base_label': '2.67.ao_ez', 'extension_degree': 3, 'extension_label': '1.300763.acs', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.576.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.67.ao_ez', 'galois_group': '4T2', 'places': [['64', '1', '0', '0'], ['23', '1', '0', '0'], ['3', '1', '0', '0'], ['44', '1', '0', '0']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.8.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.300763.acs', 'galois_group': '2T1', 'places': [['47', '1'], ['20', '1']]}