Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 14 x + 129 x^{2} - 938 x^{3} + 4489 x^{4}$ |
| Frobenius angles: | $\pm0.159890564181$, $\pm0.506776102485$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-2}, \sqrt{-3})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $131$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3667$ | $20428857$ | $90416881636$ | $405964227903129$ | $1822928517221101027$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $54$ | $4552$ | $300624$ | $20145988$ | $1350192294$ | $90459575422$ | $6060715456626$ | $406067663612356$ | $27206534521929408$ | $1822837806365469832$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 131 curves (of which all are hyperelliptic):
- $y^2=63 x^6+4 x^5+63 x^4+30 x^3+66 x^2+2 x+17$
- $y^2=7 x^6+42 x^5+23 x^4+18 x^3+39 x^2+26 x+10$
- $y^2=48 x^6+51 x^5+8 x^4+17 x^3+45 x^2+40 x+3$
- $y^2=32 x^6+30 x^5+10 x^4+14 x^3+7 x^2+56 x+48$
- $y^2=21 x^6+44 x^5+5 x^4+33 x^3+47 x^2+53 x+63$
- $y^2=21 x^6+53 x^5+32 x^4+43 x^3+37 x^2+59 x+43$
- $y^2=30 x^6+11 x^4+15 x^3+21 x^2+23 x+7$
- $y^2=45 x^6+24 x^5+44 x^4+57 x^3+16 x^2+29 x+25$
- $y^2=4 x^6+12 x^5+55 x^4+41 x^3+35 x^2+15 x+40$
- $y^2=23 x^6+27 x^5+4 x^4+5 x^2+48 x+34$
- $y^2=x^6+55 x^5+26 x^4+3 x^3+2 x^2+35 x+31$
- $y^2=31 x^6+15 x^5+21 x^4+55 x^3+2 x^2+43 x+12$
- $y^2=26 x^6+40 x^5+46 x^4+8 x^3+23 x^2+45 x+17$
- $y^2=19 x^6+53 x^5+50 x^4+54 x^2+36 x+12$
- $y^2=7 x^6+35 x^5+32 x^4+65 x^3+5 x^2+51 x+46$
- $y^2=43 x^6+19 x^5+47 x^4+41 x^3+11 x^2+46 x+39$
- $y^2=58 x^6+29 x^5+23 x^4+7 x^3+13 x^2+51 x+61$
- $y^2=38 x^6+24 x^5+60 x^4+40 x^3+4 x^2+30 x+31$
- $y^2=14 x^6+45 x^5+25 x^4+29 x^3+66 x^2+54 x+48$
- $y^2=50 x^6+7 x^5+24 x^4+14 x^3+24 x^2+38 x+53$
- and 111 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{3}}$.
Endomorphism algebra over $\F_{67}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{-3})\). |
| The base change of $A$ to $\F_{67^{3}}$ is 1.300763.acs 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$ |
Base change
This is a primitive isogeny class.