-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 4352, 'abvar_counts': [4352, 14622720, 51239686400, 191618228551680, 713417516717050112, 2654349068886488064000, 9876819661224594040600832, 36751696418791119856305438720, 136753054154474669162324615225600, 508858109121889417907343880025088000], 'abvar_counts_str': '4352 14622720 51239686400 191618228551680 713417516717050112 2654349068886488064000 9876819661224594040600832 36751696418791119856305438720 136753054154474669162324615225600 508858109121889417907343880025088000 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.540867587810525, 0.625491882155472], 'center_dim': 4, 'cohen_macaulay_max': 3, 'curve_count': 70, 'curve_counts': [70, 3926, 225742, 13839406, 844684630, 51520376198, 3142738740190, 191707326362206, 11694146205191782, 713342910965055926], 'curve_counts_str': '70 3926 225742 13839406 844684630 51520376198 3142738740190 191707326362206 11694146205191782 713342910965055926 ', 'curves': ['y^2=15*x^6+31*x^5+55*x^4+31*x^3+55*x^2+31*x+15', 'y^2=28*x^6+60*x^5+30*x^4+30*x^2+60*x+28', 'y^2=48*x^6+52*x^5+40*x^4+16*x^3+18*x^2+27*x+45', 'y^2=52*x^6+47*x^5+17*x^4+42*x^3+9*x^2+35*x+54', 'y^2=54*x^6+25*x^5+x^4+48*x^3+25*x^2+9*x+59', 'y^2=47*x^6+34*x^5+13*x^4+13*x^3+19*x^2+47*x+49', 'y^2=15*x^6+10*x^5+59*x^4+5*x^3+59*x^2+10*x+15', 'y^2=13*x^6+30*x^5+14*x^4+18*x^3+28*x^2+30*x+10', 'y^2=13*x^6+38*x^5+49*x^4+14*x^3+49*x^2+38*x+13', 'y^2=8*x^6+26*x^5+36*x^4+32*x^3+3*x^2+40*x+37', 'y^2=5*x^6+10*x^5+36*x^4+58*x^3+36*x^2+10*x+5', 'y^2=5*x^6+4*x^5+23*x^4+14*x^3+23*x^2+4*x+5', 'y^2=40*x^6+34*x^5+24*x^4+9*x^3+24*x^2+34*x+40', 'y^2=22*x^6+41*x^5+44*x^4+53*x^3+7*x^2+46*x+56', 'y^2=41*x^6+2*x^5+60*x^4+55*x^3+46*x^2+23*x+27', 'y^2=43*x^6+58*x^5+59*x^4+20*x^3+55*x^2+34*x+2', 'y^2=34*x^6+36*x^5+50*x^4+29*x^3+50*x^2+36*x+34', 'y^2=22*x^6+26*x^5+38*x^4+17*x^3+38*x^2+26*x+22', 'y^2=56*x^6+34*x^5+19*x^4+49*x^3+22*x^2+15*x+5', 'y^2=46*x^6+28*x^5+16*x^4+11*x^3+16*x^2+28*x+46', 'y^2=4*x^6+56*x^5+55*x^4+39*x^3+33*x^2+54*x+43', 'y^2=36*x^6+52*x^5+26*x^4+29*x^3+46*x^2+25*x+55', 'y^2=12*x^6+57*x^5+48*x^4+24*x^3+3*x^2+20*x+42', 'y^2=34*x^6+27*x^5+21*x^4+45*x^3+21*x^2+27*x+34', 'y^2=40*x^6+58*x^5+19*x^4+32*x^3+15*x^2+15*x+12', 'y^2=11*x^6+56*x^5+6*x^4+43*x^3+33*x^2+47*x+23', 'y^2=47*x^6+38*x^5+2*x^4+29*x^3+17*x^2+31*x+49', 'y^2=41*x^6+56*x^5+11*x^4+11*x^3+26*x^2+25*x+9', 'y^2=28*x^6+42*x^5+51*x^4+33*x^3+51*x^2+42*x+28', 'y^2=13*x^6+4*x^5+17*x^4+11*x^2+46*x+16', 'y^2=53*x^6+37*x^5+28*x^4+4*x^3+50*x^2+38*x+11', 'y^2=11*x^6+28*x^5+23*x^4+7*x^3+2*x^2+x+51', 'y^2=9*x^6+30*x^5+15*x^4+40*x^3+13*x^2+41*x+57', 'y^2=28*x^6+32*x^5+29*x^4+28*x^3+38*x^2+7*x+38', 'y^2=57*x^6+26*x^5+45*x^4+57*x^3+42*x^2+40*x+49', 'y^2=5*x^6+32*x^5+50*x^4+15*x^3+35*x^2+58*x+20', 'y^2=14*x^6+14*x^5+19*x^4+54*x^3+13*x^2+27*x+57', 'y^2=45*x^6+32*x^5+46*x^4+55*x^3+33*x^2+39*x+19', 'y^2=44*x^6+49*x^5+6*x^4+42*x^3+6*x^2+49*x+44', 'y^2=26*x^6+20*x^5+59*x^4+43*x^3+36*x^2+45', 'y^2=43*x^5+48*x^4+23*x^3+13*x^2+43*x', 'y^2=26*x^6+25*x^5+9*x^4+12*x^3+56*x^2+16*x+26', 'y^2=35*x^6+27*x^5+37*x^4+9*x^3+59*x^2+4*x+17', 'y^2=18*x^6+10*x^5+34*x^4+42*x^3+10*x^2+28*x+23', 'y^2=49*x^6+19*x^5+41*x^4+34*x^3+41*x^2+19*x+49', 'y^2=14*x^6+53*x^5+12*x^4+39*x^3+44*x^2+5*x+48', 'y^2=22*x^6+x^5+41*x^4+44*x^3+41*x^2+x+22', 'y^2=22*x^6+59*x^5+12*x^4+43*x^3+34*x^2+28*x+22', 'y^2=9*x^6+45*x^5+42*x^4+30*x^3+41*x^2+60*x+3', 'y^2=46*x^6+4*x^5+40*x^4+21*x^3+6*x^2+8*x+54', 'y^2=18*x^6+52*x^5+15*x^4+23*x^3+47*x^2+19*x+7', 'y^2=32*x^6+53*x^5+34*x^4+7*x^3+30*x^2+46*x+26', 'y^2=48*x^5+39*x^4+12*x^3+39*x^2+48*x', 'y^2=42*x^6+17*x^5+20*x^4+50*x^3+20*x^2+17*x+42', 'y^2=11*x^6+43*x^5+56*x^4+39*x^3+47*x^2+37*x+37', 'y^2=38*x^6+5*x^5+3*x^4+58*x^3+3*x^2+5*x+38', 'y^2=33*x^6+22*x^5+5*x^4+14*x^3+5*x^2+22*x+33', 'y^2=6*x^6+23*x^5+26*x^4+53*x^3+9*x^2+23*x+4', 'y^2=4*x^6+43*x^5+21*x^4+43*x^3+21*x^2+43*x+4', 'y^2=23*x^6+34*x^5+40*x^4+24*x^3+55*x^2+9*x+53', 'y^2=60*x^6+16*x^5+2*x^4+17*x^3+58*x^2+45*x+31', 'y^2=20*x^6+59*x^5+19*x^4+22*x^3+19*x^2+59*x+20', 'y^2=34*x^6+11*x^5+17*x^4+54*x^3+17*x^2+11*x+34', 'y^2=12*x^6+32*x^5+x^4+3*x^3+x^2+32*x+12', 'y^2=20*x^6+28*x^5+6*x^4+2*x^3+6*x^2+28*x+20', 'y^2=51*x^6+44*x^5+49*x^4+22*x^3+49*x^2+44*x+51', 'y^2=9*x^6+25*x^5+44*x^4+59*x^3+44*x^2+25*x+9', 'y^2=11*x^6+54*x^5+25*x^4+33*x^3+4*x^2+17*x+8', 'y^2=20*x^6+59*x^5+52*x^4+47*x^3+52*x^2+59*x+20', 'y^2=52*x^6+3*x^5+52*x^4+26*x^3+52*x^2+3*x+52', 'y^2=36*x^6+38*x^5+4*x^4+13*x^3+13*x^2+43*x+12', 'y^2=14*x^6+33*x^5+9*x^4+41*x^3+41*x^2+50*x+42', 'y^2=26*x^6+45*x^5+22*x^4+25*x^3+22*x^2+45*x+26', 'y^2=50*x^6+39*x^5+8*x^4+27*x^3+49*x^2+39*x+19', 'y^2=36*x^6+4*x^5+15*x^4+43*x^3+48*x^2+19*x+47', 'y^2=16*x^6+59*x^5+7*x^4+17*x^3+12*x^2+26*x+53', 'y^2=50*x^6+18*x^5+60*x^4+22*x^3+39*x^2+8*x+13', 'y^2=59*x^6+33*x^5+11*x^4+4*x^3+43*x^2+44*x+21', 'y^2=20*x^6+60*x^5+40*x^4+18*x^3+40*x^2+60*x+20', 'y^2=53*x^6+35*x^5+x^4+25*x^3+4*x^2+47*x+42', 'y^2=39*x^6+51*x^5+x^4+6*x^3+9*x^2+54*x+34', 'y^2=52*x^6+34*x^5+58*x^4+9*x^3+5*x^2+47*x+1', 'y^2=32*x^6+34*x^5+5*x^4+18*x^3+5*x^2+34*x+32', 'y^2=58*x^6+52*x^5+35*x^4+19*x^3+35*x^2+52*x+58', 'y^2=55*x^6+29*x^5+20*x^4+4*x^3+15*x^2+43*x+7', 'y^2=57*x^6+53*x^5+60*x^4+58*x^3+60*x^2+53*x+57', 'y^2=47*x^6+44*x^5+34*x^4+6*x^3+34*x^2+44*x+47', 'y^2=22*x^6+39*x^5+38*x^4+7*x^3+51*x^2+49*x+45', 'y^2=46*x^6+32*x^5+17*x^4+26*x^3+17*x^2+32*x+46', 'y^2=46*x^6+12*x^4+13*x^3+56*x^2+33*x+40', 'y^2=27*x^6+9*x^5+30*x^4+10*x^3+32*x^2+20*x+3', 'y^2=52*x^6+56*x^5+17*x^4+9*x^3+17*x^2+56*x+52', 'y^2=39*x^6+50*x^5+52*x^4+38*x^3+52*x^2+50*x+39', 'y^2=57*x^6+38*x^5+30*x^4+43*x^3+30*x^2+38*x+57', 'y^2=3*x^6+53*x^5+27*x^4+31*x^3+46*x^2+50*x+28', 'y^2=35*x^6+13*x^5+60*x^4+4*x^3+31*x^2+39*x+49', 'y^2=32*x^6+19*x^5+15*x^4+58*x^3+48*x^2+14*x+35', 'y^2=36*x^6+16*x^5+22*x^4+27*x^3+22*x^2+16*x+36', 'y^2=18*x^6+10*x^5+58*x^4+22*x^3+52*x^2+29*x+59', 'y^2=57*x^6+17*x^5+19*x^4+13*x^3+19*x^2+17*x+57', 'y^2=34*x^6+44*x^5+13*x^4+57*x^3+39*x^2+30*x+3', 'y^2=39*x^6+42*x^5+8*x^4+4*x^3+3*x+27', 'y^2=38*x^6+11*x^5+40*x^4+50*x^3+17*x^2+31*x+53', 'y^2=13*x^6+15*x^5+5*x^4+30*x^3+17*x^2+50*x+5', 'y^2=42*x^5+33*x^4+56*x^3+6*x^2+46*x+30', 'y^2=47*x^6+48*x^5+x^4+19*x^3+x^2+48*x+47', 'y^2=59*x^6+26*x^5+15*x^4+19*x^3+60*x^2+8', 'y^2=59*x^6+32*x^5+12*x^4+32*x^3+34*x^2+40*x+59', 'y^2=52*x^6+3*x^5+15*x^4+10*x^3+15*x^2+3*x+52', 'y^2=45*x^6+37*x^5+34*x^4+7*x^3+46*x^2+57*x+4', 'y^2=58*x^6+x^5+23*x^4+10*x^3+42*x^2+32*x+30', 'y^2=13*x^6+12*x^5+26*x^4+12*x^3+58*x^2+55*x+36'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 24, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.15.1', '2.0.52.1'], 'geometric_splitting_field': '4.0.608400.5', 'geometric_splitting_polynomials': [[94, -34, 35, -2, 1]], 'group_structure_count': 11, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 112, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 112, 'label': '2.61.i_fe', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.15.1', '2.0.52.1'], 'p': 61, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 8, 134, 488, 3721], 'poly_str': '1 8 134 488 3721 ', 'primitive_models': [], 'q': 61, 'real_poly': [1, 8, 12], 'simple_distinct': ['1.61.c', '1.61.g'], 'simple_factors': ['1.61.cA', '1.61.gA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['2,-5*F-1'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.608400.5', 'splitting_polynomials': [[94, -34, 35, -2, 1]], 'twist_count': 4, 'twists': [['2.61.ai_fe', '2.3721.hw_baao', 2], ['2.61.ae_eg', '2.3721.hw_baao', 2], ['2.61.e_eg', '2.3721.hw_baao', 2]], 'weak_equivalence_count': 43, 'zfv_index': 128, 'zfv_index_factorization': [[2, 7]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 49920, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,-5*F-1']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 58273
{'base_label': '2.61.i_fe', 'extension_degree': 1, 'extension_label': '1.61.c', 'multiplicity': 1}
-
id: 58274
{'base_label': '2.61.i_fe', 'extension_degree': 1, 'extension_label': '1.61.g', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.15.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.61.c', 'galois_group': '2T1', 'places': [['15', '1'], ['45', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.52.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.61.g', 'galois_group': '2T1', 'places': [['32', '1'], ['29', '1']]}