-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 3996, 'abvar_counts': [3996, 13490496, 51880083984, 191734537791744, 713391921885610476, 2654331443282667442176, 9876824083048471690719276, 36751689289672547782678447104, 136753051790274084059333671261584, 508858110816460258084956076166726976], 'abvar_counts_str': '3996 13490496 51880083984 191734537791744 713391921885610476 2654331443282667442176 9876824083048471690719276 36751689289672547782678447104 136753051790274084059333671261584 508858110816460258084956076166726976 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.270380560166235, 0.937047226832902], 'center_dim': 4, 'cohen_macaulay_max': 2, 'curve_count': 67, 'curve_counts': [67, 3625, 228562, 13847809, 844654327, 51520034086, 3142740147187, 191707289174689, 11694146003022202, 713342913340590625], 'curve_counts_str': '67 3625 228562 13847809 844654327 51520034086 3142740147187 191707289174689 11694146003022202 713342913340590625 ', 'curves': ['y^2=29*x^6+51*x^5+40*x^4+5*x^3+35*x^2+24*x+38', 'y^2=50*x^6+45*x^5+4*x^4+24*x^3+59*x^2+12*x+15', 'y^2=27*x^6+7*x^5+36*x^4+57*x^3+18*x^2+25*x', 'y^2=48*x^6+45*x^5+55*x^4+11*x^3+28*x^2+15*x+4', 'y^2=45*x^6+28*x^5+43*x^4+16*x^3+47*x^2+27*x+29', 'y^2=42*x^6+25*x^5+57*x^4+26*x^3+39*x^2+7*x+51', 'y^2=20*x^6+x^5+12*x^4+20*x^3+45*x^2+49*x+42', 'y^2=31*x^6+31*x^5+48*x^4+13*x^3+31*x^2+46*x+42', 'y^2=47*x^6+6*x^5+17*x^4+16*x^3+31*x^2+60*x+40', 'y^2=10*x^6+33*x^5+51*x^4+45*x^3+24*x^2+29*x+24', 'y^2=6*x^6+39*x^5+32*x^4+59*x^3+11*x^2+29*x+2', 'y^2=60*x^6+40*x^5+12*x^4+20*x^3+36*x^2+2*x+22', 'y^2=49*x^6+19*x^5+42*x^4+4*x^3+28*x^2+25*x+17', 'y^2=12*x^6+7*x^5+3*x^4+2*x^3+10*x^2+9*x+51', 'y^2=x^6+x^3+42', 'y^2=10*x^6+9*x^5+10*x^4+31*x^3+37*x^2+55*x+39', 'y^2=27*x^6+24*x^5+19*x^3+50*x^2+38*x', 'y^2=52*x^6+29*x^5+11*x^4+47*x^3+14*x^2+41*x+22', 'y^2=46*x^6+44*x^5+31*x^4+58*x^3+14*x^2+33*x+59', 'y^2=16*x^6+15*x^5+23*x^4+5*x^3+18*x^2+23*x+58', 'y^2=35*x^6+38*x^5+27*x^4+19*x^3+6*x^2+8*x+21', 'y^2=50*x^6+10*x^5+8*x^4+19*x^3+58*x^2+13*x+11', 'y^2=20*x^6+49*x^5+22*x^4+41*x^3+42*x^2+8*x+30', 'y^2=49*x^6+8*x^5+53*x^4+13*x^3+47*x^2+33*x+13', 'y^2=60*x^6+49*x^5+7*x^4+11*x^3+2*x^2+51*x+8', 'y^2=56*x^6+58*x^5+49*x^4+23*x^3+51*x^2+24*x+34', 'y^2=53*x^6+x^5+55*x^4+28*x^3+50*x^2+42*x+16', 'y^2=25*x^6+13*x^5+x^4+44*x^3+16*x^2+9*x+17', 'y^2=4*x^6+18*x^5+13*x^4+54*x^3+20*x^2+46*x+7', 'y^2=41*x^6+60*x^5+37*x^4+25*x^3+17*x^2+51*x+52', 'y^2=37*x^6+50*x^5+39*x^4+17*x^3+4*x^2+56*x+41', 'y^2=27*x^6+15*x^5+53*x^4+36*x^3+53*x^2+3*x+47', 'y^2=x^6+x^3+49', 'y^2=14*x^6+50*x^5+3*x^4+21*x^3+39*x^2+41*x+5', 'y^2=29*x^6+24*x^5+5*x^4+43*x^3+16*x^2+36*x+47', 'y^2=29*x^6+15*x^5+37*x^4+48*x^3+47*x^2+14*x+41', 'y^2=33*x^6+50*x^5+46*x^4+36*x^3+15*x^2+20*x+30', 'y^2=49*x^6+13*x^5+3*x^4+5*x^3+3*x^2+49', 'y^2=x^6+40*x^5+13*x^4+44*x^3+40*x^2+20*x+48', 'y^2=39*x^6+11*x^5+29*x^4+25*x^3+13*x^2+37*x', 'y^2=58*x^6+56*x^5+52*x^4+33*x^3+8*x^2+53*x+32', 'y^2=55*x^6+2*x^5+37*x^4+32*x^3+19*x^2+2*x+28', 'y^2=23*x^6+42*x^5+40*x^4+3*x^3+52*x^2+12*x+54', 'y^2=40*x^6+31*x^5+54*x^4+22*x^3+54*x^2+24*x+19', 'y^2=11*x^6+15*x^5+27*x^4+18*x^3+40*x^2+54*x+46', 'y^2=43*x^6+53*x^5+6*x^4+35*x^3+5*x^2+19*x+7', 'y^2=57*x^6+54*x^5+35*x^4+13*x^3+8*x^2+44*x+11', 'y^2=48*x^6+34*x^5+10*x^4+54*x^3+29*x^2+2*x+22', 'y^2=49*x^6+36*x^5+55*x^4+31*x^3+33*x^2+32*x+60', 'y^2=42*x^6+13*x^5+11*x^4+24*x^3+53*x^2+24*x+29', 'y^2=24*x^6+25*x^5+10*x^4+3*x^3+27*x+5', 'y^2=11*x^6+13*x^5+23*x^4+32*x^3+40*x^2+x+30', 'y^2=29*x^6+25*x^5+30*x^4+13*x^3+48*x^2+41*x+38', 'y^2=58*x^6+34*x^5+37*x^4+22*x^3+45*x^2+6*x+20', 'y^2=21*x^6+51*x^5+5*x^4+28*x^3+2*x^2+42*x+24', 'y^2=6*x^6+49*x^5+12*x^4+19*x^3+56*x^2+17*x+28', 'y^2=24*x^6+56*x^5+58*x^4+38*x^3+32*x^2+56*x+19', 'y^2=58*x^5+36*x^4+23*x^3+56*x^2+4*x+10', 'y^2=35*x^6+4*x^5+20*x^4+39*x^3+11*x^2+13*x+28', 'y^2=24*x^6+40*x^5+24*x^4+44*x^3+57*x^2+39*x+22', 'y^2=15*x^6+17*x^5+31*x^4+40*x^3+40*x^2+14*x+33', 'y^2=34*x^6+40*x^5+3*x^4+29*x^3+36*x^2+60*x+42', 'y^2=22*x^6+17*x^5+2*x^4+24*x^3+9*x^2+45*x+53', 'y^2=28*x^6+43*x^5+50*x^4+59*x^3+52*x^2+27*x+53'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 15, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 3, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.219.1'], 'geometric_splitting_field': '2.0.219.1', 'geometric_splitting_polynomials': [[55, -1, 1]], 'group_structure_count': 6, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 64, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 64, 'label': '2.61.f_abk', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 12, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.47961.2'], 'p': 61, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 19, 1, 6], [1, 19, 3, 2], [1, 37, 2, 6]], 'poly': [1, 5, -36, 305, 3721], 'poly_str': '1 5 -36 305 3721 ', 'primitive_models': [], 'principal_polarization_count': 64, 'q': 61, 'real_poly': [1, 5, -158], 'simple_distinct': ['2.61.f_abk'], 'simple_factors': ['2.61.f_abkA'], 'simple_multiplicities': [1], 'singular_primes': ['3,F^2-F-3', '2,F+1'], 'size': 136, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.47961.2', 'splitting_polynomials': [[324, 18, 19, -1, 1]], 'twist_count': 6, 'twists': [['2.61.af_abk', '2.3721.adt_iku', 2], ['2.61.ak_fr', '2.226981.ciu_cjity', 3], ['2.61.a_dt', '2.51520374361.atjjo_qlgumsvm', 6], ['2.61.k_fr', '2.51520374361.atjjo_qlgumsvm', 6], ['2.61.a_adt', '2.2654348974297586158321.slsgugrk_glkglcirugikezso', 12]], 'weak_equivalence_count': 18, 'zfv_index': 108, 'zfv_index_factorization': [[2, 2], [3, 3]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_pic_size': 36, 'zfv_plus_index': 3, 'zfv_plus_index_factorization': [[3, 1]], 'zfv_plus_norm': 1296, 'zfv_singular_count': 4, 'zfv_singular_primes': ['3,F^2-F-3', '2,F+1']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 54243
{'base_label': '2.61.f_abk', 'extension_degree': 1, 'extension_label': '2.61.f_abk', 'multiplicity': 1}
-
id: 54244
{'base_label': '2.61.f_abk', 'extension_degree': 3, 'extension_label': '1.226981.bek', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.47961.2', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.61.f_abk', 'galois_group': '4T2', 'places': [['44', '1', '0', '0'], ['19', '1', '0', '0'], ['3', '1', '0', '0'], ['55', '1', '0', '0']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.219.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.226981.bek', 'galois_group': '2T1', 'places': [['2', '1'], ['58', '1']]}