-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 3061, 'abvar_counts': [3061, 13924489, 51308592196, 191611008196569, 713389322715171301, 2654373182643246490000, 9876830859621621319303021, 36751697829212362258626191529, 136753057896584455852888761670756, 508858110568489477127053642192218409], 'abvar_counts_str': '3061 13924489 51308592196 191611008196569 713389322715171301 2654373182643246490000 9876830859621621319303021 36751697829212362258626191529 136753057896584455852888761670756 508858110568489477127053642192218409 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.112191271709638, 0.554475394957029], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 50, 'curve_counts': [50, 3744, 226046, 13838884, 844651250, 51520844238, 3142742303450, 191707333719364, 11694146525190326, 713342912992972704], 'curve_counts_str': '50 3744 226046 13838884 844651250 51520844238 3142742303450 191707333719364 11694146525190326 713342912992972704 ', 'curves': ['y^2=14*x^6+24*x^5+15*x^4+55*x^3+58*x^2+19*x+60', 'y^2=8*x^6+38*x^5+35*x^4+50*x^3+13*x+52', 'y^2=38*x^6+40*x^5+3*x^4+3*x^3+15*x^2+13', 'y^2=33*x^6+53*x^5+22*x^4+39*x^3+4*x^2+54*x+5', 'y^2=4*x^6+26*x^5+20*x^4+43*x^3+3*x^2+48*x+48', 'y^2=56*x^6+32*x^5+56*x^4+50*x^3+23*x^2+49*x+25', 'y^2=33*x^6+15*x^5+31*x^4+6*x^3+39*x^2+29*x+60', 'y^2=8*x^6+38*x^5+56*x^4+60*x^3+24*x^2+45*x+50', 'y^2=23*x^6+34*x^5+59*x^4+4*x^3+54*x^2+56*x+56', 'y^2=22*x^6+8*x^4+7*x^3+54*x^2+39*x+58', 'y^2=22*x^6+39*x^5+59*x^4+59*x^3+6*x^2+26*x+23', 'y^2=13*x^6+16*x^5+9*x^4+3*x^3+33*x^2+42*x+50', 'y^2=13*x^6+22*x^5+59*x^4+6*x^3+44*x^2+54*x+38', 'y^2=23*x^6+39*x^5+24*x^4+27*x^3+58*x^2+2*x+47', 'y^2=46*x^6+60*x^5+21*x^4+39*x^3+34*x^2+5*x+21', 'y^2=35*x^6+58*x^5+17*x^4+57*x^3+37*x^2+21*x+10', 'y^2=7*x^6+50*x^5+58*x^4+10*x^3+19*x^2+32*x+59', 'y^2=8*x^6+40*x^5+45*x^4+34*x^3+6*x^2+38*x+51', 'y^2=21*x^6+31*x^5+58*x^4+59*x^3+4*x^2+5*x+13', 'y^2=17*x^6+46*x^5+32*x^4+10*x^3+3*x^2+47*x+16', 'y^2=9*x^6+42*x^5+55*x^4+47*x^3+x^2+15*x+13', 'y^2=59*x^6+30*x^5+25*x^4+59*x^3+41*x^2+47*x+55', 'y^2=7*x^6+8*x^5+51*x^4+47*x^3+4*x^2+x+8', 'y^2=28*x^6+16*x^5+7*x^4+24*x^3+15*x^2+3*x+11', 'y^2=46*x^6+20*x^5+35*x^4+17*x^3+50*x^2+40*x+26', 'y^2=56*x^6+34*x^5+6*x^4+56*x^3+24*x^2+12*x+52', 'y^2=20*x^6+34*x^5+14*x^4+16*x^3+29*x^2+10*x+3', 'y^2=55*x^6+15*x^5+17*x^4+43*x^3+42*x^2+30*x+18', 'y^2=34*x^6+56*x^5+44*x^4+9*x^3+2*x^2+50*x+3', 'y^2=5*x^6+52*x^5+40*x^4+19*x^3+20*x^2+6*x+23', 'y^2=7*x^6+33*x^5+3*x^4+27*x^3+48*x^2+41*x+10', 'y^2=26*x^6+21*x^5+41*x^4+40*x^3+x^2+59*x+28', 'y^2=43*x^6+60*x^5+51*x^4+40*x^3+14*x^2+10*x+18', 'y^2=11*x^6+26*x^5+32*x^4+28*x^3+12*x^2+52*x+35', 'y^2=49*x^6+5*x^5+9*x^4+52*x^3+10*x^2+59*x+30', 'y^2=14*x^6+54*x^5+31*x^4+48*x^3+21*x^2+27*x+42', 'y^2=31*x^6+56*x^5+5*x^4+26*x^3+48*x^2+17*x+51', 'y^2=29*x^6+37*x^5+18*x^4+47*x^3+18*x^2+17*x+57', 'y^2=53*x^6+17*x^5+46*x^4+41*x^3+6*x^2+17*x+37', 'y^2=30*x^6+53*x^5+55*x^4+20*x^3+39*x^2+48*x+40', 'y^2=23*x^6+38*x^5+3*x^4+16*x^3+11*x^2+30*x+38', 'y^2=38*x^6+60*x^5+52*x^4+24*x^3+40*x^2+53*x+1', 'y^2=23*x^6+54*x^5+46*x^4+45*x^3+54*x^2+26*x+30', 'y^2=26*x^6+22*x^5+15*x^4+41*x^3+50*x^2+51*x+7', 'y^2=60*x^6+21*x^5+31*x^4+13*x^3+40*x^2+2*x+54', 'y^2=24*x^6+11*x^5+52*x^4+25*x^3+27*x^2+18*x+35', 'y^2=58*x^6+19*x^5+15*x^4+10*x^3+22*x^2+29*x+35', 'y^2=39*x^6+22*x^5+45*x^4+52*x^3+26*x^2+40*x+3', 'y^2=24*x^6+33*x^5+17*x^4+28*x^3+7*x^2+10*x+53', 'y^2=47*x^6+11*x^5+53*x^4+43*x^3+23*x^2+42*x+59', 'y^2=35*x^6+8*x^5+54*x^4+27*x^3+12*x^2+25*x+31', 'y^2=42*x^6+33*x^5+37*x^4+37*x^3+58*x^2+14*x+18', 'y^2=55*x^6+31*x^5+41*x^4+3*x^3+x^2+38*x+3', 'y^2=39*x^6+37*x^5+57*x^4+8*x^3+51*x^2+55*x+8', 'y^2=43*x^6+59*x^5+30*x^4+10*x^3+49*x^2+20*x+10', 'y^2=32*x^6+46*x^5+53*x^4+28*x^3+28*x^2+58*x+17', 'y^2=47*x^6+5*x^5+43*x^4+3*x^3+28*x^2+21*x+57', 'y^2=18*x^6+53*x^5+x^4+46*x^3+x^2+2*x+10', 'y^2=26*x^6+47*x^5+44*x^4+46*x^3+12*x^2+6', 'y^2=23*x^6+32*x^5+49*x^4+15*x^3+13*x^2+14*x+20', 'y^2=30*x^6+45*x^5+53*x^3+43*x^2+30*x+25', 'y^2=54*x^6+2*x^5+35*x^4+11*x^3+27*x^2+2*x+9', 'y^2=60*x^6+7*x^5+16*x^4+13*x^3+28*x^2+50*x+3', 'y^2=14*x^6+49*x^5+21*x^4+34*x^3+49*x^2+53*x+36', 'y^2=17*x^6+38*x^5+60*x^4+16*x^3+27*x^2+46*x+18', 'y^2=54*x^6+19*x^5+4*x^4+33*x^3+39*x^2+33*x+53', 'y^2=26*x^6+55*x^5+2*x^4+x^3+44*x^2+45*x+33', 'y^2=35*x^6+59*x^5+7*x^4+56*x^3+6*x^2+25*x+24', 'y^2=9*x^6+21*x^5+58*x^4+41*x^3+27*x+30', 'y^2=2*x^6+28*x^5+15*x^4+46*x^3+x^2+10*x+50'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 4, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 3, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.4.1'], 'geometric_splitting_field': '2.0.4.1', 'geometric_splitting_polynomials': [[1, 0, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 70, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 70, 'label': '2.61.am_df', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 24, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.144.1'], 'p': 61, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 2, 1, 2], [1, 13, 1, 56]], 'poly': [1, -12, 83, -732, 3721], 'poly_str': '1 -12 83 -732 3721 ', 'primitive_models': [], 'principal_polarization_count': 70, 'q': 61, 'real_poly': [1, -12, -39], 'simple_distinct': ['2.61.am_df'], 'simple_factors': ['2.61.am_dfA'], 'simple_multiplicities': [1], 'singular_primes': ['5,5*F^2+14*F+4*V-44', '83,15*F^2-8*F+V-1'], 'size': 66, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.144.1', 'splitting_polynomials': [[1, 0, -1, 0, 1]], 'twist_count': 16, 'twists': [['2.61.m_df', '2.3721.w_aeun', 2], ['2.61.y_kg', '2.226981.abka_bmhoc', 3], ['2.61.ak_bn', '2.13845841.akhq_cxqtzn', 4], ['2.61.k_bn', '2.13845841.akhq_cxqtzn', 4], ['2.61.ay_kg', '2.51520374361.batce_tsgazlgg', 6], ['2.61.a_aw', '2.51520374361.batce_tsgazlgg', 6], ['2.61.aw_ji', '2.2654348974297586158321.lxttuvvw_enufrjizegwqykmg', 12], ['2.61.au_io', '2.2654348974297586158321.lxttuvvw_enufrjizegwqykmg', 12], ['2.61.ac_c', '2.2654348974297586158321.lxttuvvw_enufrjizegwqykmg', 12], ['2.61.a_w', '2.2654348974297586158321.lxttuvvw_enufrjizegwqykmg', 12], ['2.61.c_c', '2.2654348974297586158321.lxttuvvw_enufrjizegwqykmg', 12], ['2.61.u_io', '2.2654348974297586158321.lxttuvvw_enufrjizegwqykmg', 12], ['2.61.w_ji', '2.2654348974297586158321.lxttuvvw_enufrjizegwqykmg', 12], ['2.61.a_aeq', '2.7045568477354647704120453346932251277539041.dpqabavhbbjfaxrw_ignaczxhitvmnbayyynxujedqigkyyg', 24], ['2.61.a_eq', '2.7045568477354647704120453346932251277539041.dpqabavhbbjfaxrw_ignaczxhitvmnbayyynxujedqigkyyg', 24]], 'weak_equivalence_count': 4, 'zfv_index': 2075, 'zfv_index_factorization': [[5, 2], [83, 1]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 56, 'zfv_plus_index': 5, 'zfv_plus_index_factorization': [[5, 1]], 'zfv_plus_norm': 6889, 'zfv_singular_count': 4, 'zfv_singular_primes': ['5,5*F^2+14*F+4*V-44', '83,15*F^2-8*F+V-1']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 57231
{'base_label': '2.61.am_df', 'extension_degree': 1, 'extension_label': '2.61.am_df', 'multiplicity': 1}
-
id: 57232
{'base_label': '2.61.am_df', 'extension_degree': 3, 'extension_label': '1.226981.asa', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.144.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.61.am_df', 'galois_group': '4T2', 'places': [['32', '1', '0', '0'], ['40', '1', '0', '0'], ['29', '1', '0', '0'], ['21', '1', '0', '0']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.4.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.226981.asa', 'galois_group': '2T1', 'places': [['50', '1'], ['11', '1']]}