Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 12 x + 83 x^{2} - 732 x^{3} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.112191271710$, $\pm0.554475394957$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\zeta_{12})\) |
Galois group: | $C_2^2$ |
Jacobians: | $70$ |
Isomorphism classes: | 66 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3061$ | $13924489$ | $51308592196$ | $191611008196569$ | $713389322715171301$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $50$ | $3744$ | $226046$ | $13838884$ | $844651250$ | $51520844238$ | $3142742303450$ | $191707333719364$ | $11694146525190326$ | $713342912992972704$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 70 curves (of which all are hyperelliptic):
- $y^2=14 x^6+24 x^5+15 x^4+55 x^3+58 x^2+19 x+60$
- $y^2=8 x^6+38 x^5+35 x^4+50 x^3+13 x+52$
- $y^2=38 x^6+40 x^5+3 x^4+3 x^3+15 x^2+13$
- $y^2=33 x^6+53 x^5+22 x^4+39 x^3+4 x^2+54 x+5$
- $y^2=4 x^6+26 x^5+20 x^4+43 x^3+3 x^2+48 x+48$
- $y^2=56 x^6+32 x^5+56 x^4+50 x^3+23 x^2+49 x+25$
- $y^2=33 x^6+15 x^5+31 x^4+6 x^3+39 x^2+29 x+60$
- $y^2=8 x^6+38 x^5+56 x^4+60 x^3+24 x^2+45 x+50$
- $y^2=23 x^6+34 x^5+59 x^4+4 x^3+54 x^2+56 x+56$
- $y^2=22 x^6+8 x^4+7 x^3+54 x^2+39 x+58$
- $y^2=22 x^6+39 x^5+59 x^4+59 x^3+6 x^2+26 x+23$
- $y^2=13 x^6+16 x^5+9 x^4+3 x^3+33 x^2+42 x+50$
- $y^2=13 x^6+22 x^5+59 x^4+6 x^3+44 x^2+54 x+38$
- $y^2=23 x^6+39 x^5+24 x^4+27 x^3+58 x^2+2 x+47$
- $y^2=46 x^6+60 x^5+21 x^4+39 x^3+34 x^2+5 x+21$
- $y^2=35 x^6+58 x^5+17 x^4+57 x^3+37 x^2+21 x+10$
- $y^2=7 x^6+50 x^5+58 x^4+10 x^3+19 x^2+32 x+59$
- $y^2=8 x^6+40 x^5+45 x^4+34 x^3+6 x^2+38 x+51$
- $y^2=21 x^6+31 x^5+58 x^4+59 x^3+4 x^2+5 x+13$
- $y^2=17 x^6+46 x^5+32 x^4+10 x^3+3 x^2+47 x+16$
- and 50 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{3}}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{12})\). |
The base change of $A$ to $\F_{61^{3}}$ is 1.226981.asa 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
Base change
This is a primitive isogeny class.